
INDIVIDUAL FAIRNESS FOR ADVERSARIAL ROBUSTNESS

Valerio Pepe
Harvard SEAS

Cambridge, MA 01238
valeriopepe@college.harvard.edu

ABSTRACT

Defenses against adversarial attacks in the domain of image recognition are tools of great interest
in computer vision settings but are often computationally expensive or require the re-training of
the network they are to defend and/or access to its training data. In this paper, we define image
classification as a problem of individual fairness [Dwork et al., 2011], and, in doing so, propose
and implement an inference-time centroid-based adversarial defense method for images perturbed
by the Fast Gradient Sign Method [Goodfellow et al., 2015]. We find the method to have the same
asymptotic runtime as regular neural network inference and require minimal knowledge of the
training data. We report increases of 15 to 20 percentage points in the 0.1 ≤ ε ≤ 0.2 setting in
both a fully-connected neural network baseline and a LeNet-5 baseline, both trained on MNIST and
Fashion-MNIST [Lecun et al., 1998] [Xiao et al., 2017]. Finally, we find increased robustness up to
ε ≤ 0.5, with a trade-off in accuracy on clean examples (ε ≤ 0.1).

1 Introduction

Adversarial attacks for image classification problems were first introduced in [Szegedy et al., 2014], defined as “perturba-
tions found by optimizing the input to maximise prediction error" in the ImageNet database [Russakovsky et al., 2015],
trained specifically on AlexNet [Krizhevsky et al., 2012], a Convolutional Neural Network-based architecture
[LeCun et al., 1989], by far the best neural network architecture at the time for an image classification task. These were
presumed to work due to some mechanism inherent to AlexNet’s method of classification by which “small additive
perturbations of the input [...] produce large perturbations of the output at the last layer [of the neural network]",
moving the input across decision boundaries and causing its misclassification. With the birth of the study of adversarial
attacks, the idea of defenses against them also soon came to be: this method of generating adversarial attacks was then
formalized in [Goodfellow et al., 2015] as the Fast Gradient Sign Method, and Goodfellow was the first to propose
‘adversarial training’, placing the images generated by the perturbation method back into the training loop to increase the
network’s robustness to them. However, these methods fail to generalize their networks’ robustness past the specific type
of noise used to generate the images, so they are not very useful in practice [Carlini and Wagner, 2017]. Additionally,
re-training models requires access to the model’s original training data and its precise architecture and hyperparameters,
as well as being incredibly computationally expensive as compared to inference on the model [Strubell et al., 2019],
meaning that not everyone who is able to run a model may be able to harden it to adversarial attacks due to data or
resource constraints. Even more recent methods, such as defensive distillation [Papernot et al., 2016] still require at least
one re-training step, and therefore automatically disqualify individuals who do not have the necessary computational
capabilities to train a network.
With these considerations in mind, we propose a computationally-efficient method for adversarial robustness that
involves no re-training of the model at any stage. Instead, we leverage the characteristics of adversarial attacks –
perturbations in the last layer (or the last few layers) of the neural network – through the lens of a set of individual
fairness constraints [Dwork et al., 2011] enforced at inference-time. We find that this method achieves modestly better
performance on adversarial examples than an undefended neural network (both fully-connected and convolutional,
proving it to be architecture-agnostic) and asymptotically as computationally expensive as inference itself, suggesting
that adversarial defenses that are much computationally cheaper than current techniques are possible and shedding light
on how fairness-theoretical concerns may inform these.

Individual Fairness for Adversarial Robustness Page 2 of 12

2 Related Work

Individual Fairness. As presented in [Dwork et al., 2011], individual fairness is a definition of fairness that can
be informally summarized by saying that ‘similar individuals must be treated similarly’. Formally, it characterizes
classification through a mapping M from individuals (inputs) to outcomes (outputs). It then defines two distance metrics
d (on individuals) and D (on outcomes), and considers a system ‘fair’, if, for all individuals x, y ∈ V and outcomes
Mx,My ∈ ∆(A), we have

D(Mx,My) ≤ d(x, y).

If a system satisfies this (D, d)-Lipschitz condition, it implies that the distance between the outcomes Mx,My of two
individuals is at most the distance between the individuals x, y themselves, so we can certify that similar individuals
are being treated similarly and our system is ‘fair’ with regards to any pair of two individuals in V . This definition
of fairness avoids certain pitfalls of group fairness approaches like statistical parity (an approach that defines fairness
as having a total variation distance lower than some ε between the distributions of outcomes for two main groups of
individuals, therefore considering individuals in the aggregate and not individually) where small enough subsets of
a certain group can be discriminated against without rendering the system unfair. However, it is still vulnerable to
criticism regarding its practical feasibility with regards to the simultaneous optimization of a loss function along with
achieving fairness, as well as the presence of the trivial classifier (everyone gets the same outcome) as a ‘fair’ one, and
specfics regarding the construction of the task-specific metrics [Rothblum and Yona, 2018] [Fleisher, 2021].

Adversarial Attacks. The adversarial attacks we will consider in this paper are the ones hinted at in the introduction.
We will therefore center our analysis around the Fast Gradient Sign Method (henceforth FGSM), introduced in
[Goodfellow et al., 2015]. For some 0 ≤ ε ≤ 1, FGSM returns an ε-constrained perturbation η calculated as follows:

η = ε · sign(∇xJ(θ, x, y))

Where x is the input to the neural network, y is its label, θ is the set of parameters of the model (its weights), and J
is a loss function. This means J(θ, x, y) is the loss with respect to the current weights θ of the network, and some
specific image x with label y; we then take the gradient ∇x with respect to the image x, take the sign of the gradient,
and multiply it by our perturbation budget ε. Finally, to perturb the image, we just let our perturbed image xp = x+ η,
therefore adding the perturbation to the original image pixel-wise: intuitively, this attack takes the direction of the loss
function with regards to the input image, and shifts every single pixel by a value of ε in that direction. This guarantees
that we are moving the image orthogonally away from the decision boundary that would classify it as coming from
label y, and thereby maximising the chance that the image is misclassified.

Additionally, a brief note on the ‘philosophy’ of adversarial attacks. Since we normalize the image’s pixel values to be
between 0 and 1 to prepare them for perturbation (since ε itself is between 0 and 1), it is trivial to see that by simply
setting ε = 1, the image that will result from an application of FGSM will be overwhelmed by the ‘image’ produced by
the gradient, and therefore be completely unintelligible, resulting in a misclassification. We will not be considering
these adversarial attacks: they adhere to Szegedy and Goodfellow’s initial definition of the term, but the information
about the original class was destroyed in the perturbation, so we cannot expect a neural network to be able classify it (a
human would not be able to, either). The adversarial robustness literature also has no standard on what constitutes a
reasonable ε value, because it may be affected by the setting in which a system is deployed, with more safety critical
applications (e.g. self-driving vehicles) requiring much stronger robustness than other applications (e.g. automatic bird
recognition in ornithologists’ images). To this end, we will only consider perturbations 0 ≤ ε < 0.5, since after ε = 0.5,
FGSM can ‘output a uniformly gray image for any pixel value, thus fooling any classifier’ [Madry et al., 2019].

Datasets. For our evaluation, we employ two standard datasets in computer vision and adversarial robustness tasks.
The first is MNIST [Lecun et al., 1998], a collection of 28 × 28-pixel, grayscale images representing handwritten
digits taken from a mixture of data from the American Census Bureau and American high school students. This is an
incredibly common dataset in computer vision due to its simplicity (the images are very low resolution, so it is not
computationally expensive to train on them as opposed to other, more complex datasets) and the interesting semantic
distinctiveness of each of its classes; every number is clearly distinct from others (4 and 2 look quite different for
example), but there are also interesting gray areas (1 and 7, 8 and 0) that inject some noise into the classes.

We also use Fashion-MNIST, a more recent database produced by Zalando Research in [Xiao et al., 2017] in response
to the lack of challenge and the lack of real-world ambiguity that the regular MNIST poses as a computer vision model.
Fashion-MNIST is a collection of 10 types of items of clothing (t-shirts, trousers, pullovers, dresses, coats, sandals,
shirts, sneakers, bags, and ankle boots) scraped from Zalando’s website and resized to the same 28 × 28 grayscale
format as the original MNIST dataset. This is a more interesting (albeit much less famous) dataset than MNIST since it
includes more axes of variation for the items (e.g. material: one can have a fuzzy or a leather coat and need to know
that they are both ‘coats’, but we will never encounter a fuzzy ‘8’ as opposed to a leather ‘8’), and the shapes of the

2

Individual Fairness for Adversarial Robustness Page 3 of 12

items themselves are much more complex and varied, requiring a better model to solve it than MNIST would. It also
has the advantage of testing whether neural network models can encode the ‘shape bias’, a cognitive inductive bias in
humans where the shape of an object is taken to determine its membership in some class of objects much more than its
material or its color [Kemp et al., 2007].

Figure 1: Example images from MNIST (left) and Fashion-MNIST (right), original and perturbed by an FGSM with
ε = 0.2

CNNs and LeNet. Finally, aside from a regular, fully-connected neural network (of which the architecture will be
explained later), we will also be using a convolutional neural network baseline model [LeCun et al., 1989]. Specifically,
we will be using LeNet, a simple, 5-layer convolutional neural network developed by Yann Lecun in 1998 for the
purpose of solving the classification of the MNIST dataset. We use this model because it is ubiquitous in the computer
vision literature (along with AlexNet) and therefore provides a well-known baseline to test our defense against to make
sure it’s not the architecture of the specific fully-connected neural network that allows our defense to work.

3 Methods

3.1 Threat Modeling

Before mentioning the algorithm and theoretical insights behind the adversarial defense, we will elaborate on what
scenario we are targeting in terms of resources on both the attacker and the defender’s side. We assume both the attacker
and the defender have white-box access to the same neural network classifier (but cannot modify it), and have enough
computational resources to run inference on it and calculate gradients with respect to the loss function (which the
attacker will need to run the FGSM perturbations). Additionally, we assume that neither the defender nor the attacker
have access to the full training set of the network, but they both know what the input image format is, what the classes
represent, and both have access to one image from each class.

These assumptions imply neither actor can retrain or otherwise tamper with the classifier, both because it’s explicitly
disallowed to modify it, but also because they lack the training data and the computational resources needed to retrain
it, even for a single step. These are reasonable assumptions when one considers the current state of open-source,
state-of-the-art machine learning models: for example, Meta AI’s LLaMa family of models’ weights are public, and the
model’s inference costs are low enough such that its smaller models (e.g. the 7b-parameter sub-family) can be run on a
single GPU [Touvron et al., 2023]. However, the model is still much larger than would be feasible to re-train given the
high costs of training over inference, its training data is proprietary, and the specific way in which it was trained is also
unknown to the public, rendering re-training impossible.

3.2 Adversarial Defense

Having cleared the assumptions with regards to what resources both the attacker and the defender have, we can now
describe the proposed defense. We will first outline how we consider image classification to be an individual fairness
problem, and then elaborate on the specific algorithm we implement.

3.2.1 Individual Fairness Formalization

To formalize the problem of image classification through the lens of individual fairness, we must first define our
mapping M ; doing so will also define what our sets of outcomes and individuals are, and fully specify the remainder of
the formalization.

Therefore, we define M as a ‘generative process’, a mapping that takes image classes and maps them onto images:
an agent creating an image does not think of an image first and then arbitrarily assigns it a class second, but does the
opposite, thinking of the class they want to instantiate first, and then producing an image based on that. This can also be
seen from the point of view of an image classification task: in image classification, our central object of interest is the

3

Individual Fairness for Adversarial Robustness Page 4 of 12

class, not the image, and we can just consider images some noisy instantiations of the classes we want to characterize,
as per the mapping above.

Our individuals for this formalization will thus be the classes ci that the neural network can sort images into, as well
as a class p for all of the input classes. We will denote an outcome from a class i, Mci, a ‘centroid for class i’, and
outcomes specifically for class p, Mp, ‘input images’.

For it to be fair for some input image Mp to be classified as some class ci, the following (D, d)−Lipschitz condition
must therefore be met:

D(Mci,Mp) ≤ d(ci, p)

Given that Mci and Mp are images, D(x, y) should be some metric that computes the similarity between two vectors.
The task-specific metric for classes, d(x, y), is more difficult to give an exact formulation of, but it should intuitively
capture a level of noise, with d(ci, p) = αi indicating the upper-bound for how distant a centroid can be from an input
image in the same class (this captures the idea that the input class p is a noisy version of one of the ci’s, so the distance
between the two should be the level of that noise). This should be a value scaled in the same way as D(x, y), and
should reflect the structure of the classes at hand.

For example, in MNIST digit recognition, we should have d(c1, p) ≥ d(c8, p), i.e. the distance between the class of all
input images and the class of ones should be higher than the distance between the distance between the class of eights
and the class of all input images. This is because there is more than one way to draw a ‘1’ but only one way to draw an
‘8’, so we should allow for more noise between the centroid of ones and an unknown input than the centroid of eights
and an unknown input. Similarly, in Fashion-MNIST, we should have d(cCoats, p) ≥ d(cT-shirts, p), since coats are more
different between them than T-shirts are (they can have different shapes or materials, while T-shirts are similarly-shaped
by definition and are all made of cotton).

Alternatively, if intrinsic differences within classes are hard to characterize or seem opaque for image classification
purposes, a cognitively-informed approach could be used, similar to the one proposed in [Xu and Tenenbaum, 2007],
which formalizes ‘distances’ between concepts in the human mind based on visual similarity.

Putting all of these together, we can therefore say we classify an input image Mp as a particular class ci if the Lipschitz
condition D(Mci,Mp) ≤ d(ci, p) is satisfied, and we have reformulated image classification as an individual fairness
problem, under a similar mantra of ‘Similar inputs (with regard to a class’s centroid) are treated similarly’.

3.2.2 Algorithm

We will first describe the algorithm informally. Informally, as an input image passes through the neural network, at
every layer we take the cosine distance of its activation vectors against the activation vectors of each class’ centroid, and
note the classes for which the fairness constraint is satisfied through this distance metric. Once the image has passed
through every layer, we classify the image as the class that has satisfied the fairness constraint the most times. A formal
description follows.

Let our input image be denoted by x ∈ X , our label for the image be some y ∈ Y and the output of our neural network
of some n layers be denoted by NNn(x), where for all 1 ≤ j ≤ n, NNj(x) indicates the output of the input image x
at the jth layer (so NN1(x) is the intermediate activation of the network after one layer, and NNn(x) is the final set of
activation vectors).

For every class j, define some centroid kj ∈ X , an image of which both the attacker and the defender know the true
label. Also define some acceptable noise threshold αj denoting the maximum allowable difference between two images
in the same class, as explained in the previous section. This will define our task-specific metric for individuals, and
we’ll have d(cj , p) = αj for all classes j.

Now, to define our task-specific metric for outcomes D, recall the notion of the cosine similarity between two vectors.
For two vectors u, v ∈ Rd, where d > 0 is some integer, the cosine similarity of u and v is the value

C(u, v) =
u · v

||u|| · ||v||
.

This is the value of the cosine of the angle, derived from the formula of the geometric intepretation of the dot product,
where, in the following equation, we solve for cos θ:

u · v = ||u|| · ||v|| cos θ

4

Individual Fairness for Adversarial Robustness Page 5 of 12

Intuitively, note that this captures the difference in the directions u and v are pointing in: a cosine value of 1 means the
two are pointing in the same direction, and a cosine value of −1 means they are pointing in exactly opposite directions.
Therefore, we can use the cosine similarity as a metric of how ‘close’ two vectors are 1.

From cosine similarity, we can define a notion of distance, cosine distance, as CD(u, v) = 1− C(u, v): two vectors
with a cosine similarity of −1 will have a cosine distance of 2, and a cosine similarity of 1 will result in a cosine
distance of 0. For simplicity, in this paper we will be defining our ‘(rescaled) cosine distance’ as the following equation,
which is just a cosine distance rescaled between 0 and 1 by dividing the result by 2. This will act as our distance metric
between outcomes for the individual fairness of the problem.

D(u, v) =
1− C(u, v)

2

Having defined all relevant terms and distance metrics, we can summarize the algorithm as follows:

Algorithm 1: Implementation of the Adversarial Defense
Input : Input Image x, Classes c1, . . . , cl, Centroids k1, . . . , kl, n-layer Neural Network NN
Output : Class cj

1 T = {ci = 0 for i in {1, . . . , l}}
2 #Makes a dictionary containing all the classes and a tally of how many times they

satisfy the Lipschitz condition

3 for i in {1, . . . , n} do
4 ai = NNi(x)
5 for j in {1, . . . , l} do
6 bi = NNi(kj)
7 if D(ai, bi) < d(cj , x) then
8 T [cj] = T [cj] + 1
9 #If a class satisfies the Lipschitz condition, augment its tally by 1

10 return argmax
cj

T [cj] #Returns the class cj that satisfied the condition most often

Intuitively, this should work as a defense against FGSM: as mentioned above, the attack only perturbs the image in
terms of the last layer’s gradient (and therefore decision boundary). In contrast, this algorithm uses information present
at every layer, therefore being able to leverage features about the true class that were not perturbed by FGSM in order to
recover it. Given specifically our notion of distance as cosine distance, since cosine distance measures the difference in
the directions of its vectors, the defense can be thought of as preventing images that drift too far out from some class
from being classified as that class, regardless of what the neural network believes to be the most accurate prediction.

3.3 Neural Network Architectures

To test the performance of the algorithm described above, we provide two baselines, a fully-connected neural network
and a convolutional neural network.

The fully-connected neural network is composed of 7 fully-connected linear layers. The first layer compresses the
28 × 28 input into 64 neurons. Five 64-neuron linear layers follow, each with a ReLU [Fukushima, 1969] as its
non-linear activation function. The final layer takes the 64-dimensional input down to the 10 classes (either digits or
articles of clothing), and is activated by a log-softmax nonlinearity to output a final label.

The convolutional neural network is an instantiation of the LeNet architecture, an architecture proposed for digit
recognition in MNIST in [Lecun et al., 1998]. It is composed of 5 layers, two of which are convolutional, and three of
which are linear layers. Layers 1 and 2 are the fully-connected ones: these both generate 5× 5 kernels, with Layer 1
training 6 and Layer 2 training 16. There is a 2× 2 maxpool non-linearity between the two convolutional layers. These
16 channels then get flattened, and passed through three linear layers, of sizes 120, 84, and finally 10, all with ReLU
activation functions. The final activation function is, once again, a log-softmax.

1Cosine similarity ignores any differences in magnitude: this is ideal for our purposes, since our ‘magnitudes’ are not necessarily
relevant to image classification as they are mainly affected by pixel brightness values, and, for example, we would like a ‘line
detector’ circuit within the neural network to function well with regards to all lines, not just bright or dark ones.

5

Individual Fairness for Adversarial Robustness Page 6 of 12

The hyperparameters and training used to train both of these models were the same: they were trained on 55000 random
images from either MNIST or Fashion-MNIST, through Stochastic Gradient Descent 2 with a learning rate of ℓ = 10−2

and a batch size of 32. Training was stopped after either 95% accuracy was reached on a validation set of 5000 images
or 20 epochs, whichever came first.

These hyperparameters and architectures quite standard, with LeNet being a staple of computer vision research, so there
is no further comment to be made.

4 Results

4.1 Baselines

The results for the experiments listed above, adversarial defense performance on both the fully-connected and convolu-
tional neural networks, across both MNIST and Fashion-MNIST, are shown below in Figure 2. The neural network’s
performance before the defense is applied is shown as the ‘defenseless’ curve, while the adversarial defense’s perfor-
mance is represented by the ‘defense’ curve. A ‘loose defense’ (i.e. if the true class was in the top 3 most fair classes 3)
baseline is also shown, as are chance levels of performance. Tabular data at 0.1-epsilon intervals, as well as the specific
values of αj used for each class in each dataset are given in Appendix A.

7

Figure 2: Main Experiment Results. Panel (a): Fully-Connected Neural Network Performance on MNIST, (b): Fully-
Connected Neural Network Performance on Fashion-MNIST, (c): CNN Performance on MNIST, (d): CNN Performance
on Fashion-MNIST

We also propose three natural tweaks to the experiments above. Firstly, changing the αj values, first to be all equal (to
see if our heuristic that some classes should allow for more noise than others holds on these datasets), and also test
whether generally, allowing more or less noise yields better results. Secondly, we analyse the effects of more sets of
centroids being used in the defense, from only one set to 2 and 5. Thirdly, we bias the tallying procedure towards earlier
or later layers: instead of just flatly adding 1 to a class’ counter every time it is considered fair, we add some e−ℓ or eℓ
(where ℓ is the number of the layer in the neural network) to bias the counting procedure towards either the earlier or
the later layers. Figures describing the results of these experiments can be found in Appendix B.

2There is no commonly agreed upon citation for SGD, but [Robbins, 1951] is probably the closest thing to the first paper to
describe an SGD-like method for optimization.

3Note that there are 10 classes in both datasets, so the true class is guaranteed to appear in the top 10 most fair classes, which
would be an uninteresting result. Therefore, we limit ourselves to the top 3, which we find to be a good balance between highlighting
the network’s actual performance and the increases given naturally by loosening the defense.

6

Individual Fairness for Adversarial Robustness Page 7 of 12

4.2 Theoretical Results

Proposition 1. For a neural network with n layers and d neurons, assuming all arithmetic operations are O(1), both
regular inference and inference augmented by our adversarial defense have runtime O(nd2).

Proof.

We will assume a neural network is composed of some n layers, each of which has d neurons. Additionally, we
will assume scalar addition and multiplication are O(1), for two reasons: firstly, because that is the assumption that
underlies most matrix multiplication algorithms, so since this algorithm makes heavy use of both scalar and matrix
multiplications, we need to keep our assumptions constant, and if they are O(1) in the matrix multiplication algorithm,
they must be O(1) in scalar multiplication, and secondly because, in practice, all of this arithmetic will be 32- or 64-bit
floating point arithmetic, which is O(1) given the input size is constant at 32/64 bits.

Recall the formalism of a forward-pass in machine learning: at some layer, a forward pass calculates some a = f(z),
where f is a function known as an ‘activation function’, applied element-wise to z, and z ∈ R1×d is some ‘activation
vector’. For some fixed weights θ ∈ Rd×d, and an input x ∈ R1×d, z = θ×x, where × indicates a matrix multiplication.
Thus, at every forward pass, we are computing a = f(θ × x), performing one d × d matrix multiplication and d
element-wise applications of f .

We will not be assuming any specific matrix multiplication algorithm; however, d× d matrix multiplication must take
some time at least Θ(d2), even in theory, since it takes at least Θ(d2) time to read all the entries in the matrices being
multiplied, so we will be using this bound. We will assume our activation function will take some time O(1), because it
is also performing fixed-bit floating point arithmetic; however, this does not really matter, because our defense doesn’t
call the activation function any more times than regular inference does, so this will not contribute to the difference of
one over the other.

Therefore, one forward-pass at a single layer must take at least time O(d2 + d(1)) = O(d2). Across all n layers,
inference thus takes O(nd2) time.

Our augmented defense takes the cosine similarity at every layer: a dot product of two d-dimensional vectors, the
magnitudes of two d-dimensional vectors, and divides one by the other. A dot product of two d-dimensional vectors
takes d multiplications and d − 1 additions, which take time O(d(1) + (d − 1)(1)) = O(d). Taking the magnitude
of a d-dimensional vector can be done by taking the dot product of it with itself and taking the square root of the
result. Through the Newton-Raphson method we can reduce taking a square root to multiplication, so this entire
procedure takes d multiplications and d− 1 additions, plus an additional multiplication for the square root, for time
O((d+1)(1)+d(1)) = O(d). We do this twice and then multiply the two results, for a total time of O(2d+1) = O(d),
once more. Finally, we assumed arithmetic operations take time O(1), so dividing the two is also constant-time, and the
total time to calculate the cosine distance, up to constant factors, is O(d+ d) = O(d).

Therefore, repeating this n times we obtain an increase in runtime of an additive factor of O(nd) as compared to regular
inference. However, note that O(nd2 + nd) = O(n(d2 + d)) = O(nd2), so the time taken for regular inference still
dominates the runtime of this algorithm, and, asymptotically, we are not increasing the runtime by running our defense.
QED.

5 Discussion

As can be seen in Figure 2, the defense offers significant increases in accuracy under attacks by FGSM for both the
fully-connected and the convolutional neural network baselines, across both MNIST and Fashion-MNIST. The strongest
effect can be seen on Fashion-MNIST, where for both baselines, around 0.1 ≤ ε ≤ 0.2 we get accuracy increases of
about 0.2; the defenseless models also fall to 0 accuracy at ε ≈ 0.2, while the defended models never do, and only
cross below chance accuracy at ε ≈ 0.3. The loose defense is even better (expectedly), and, at the same point, is more
accurate by another 15 percentage points, resulting in ≈ 0.4 accuracy across the same range.

Even though the defense is stronger on Fashion-MNIST, regular MNIST is also defended well, with similar 0.2
increases in accuracy at ε ≈ 0.1 for the fully-connected neural network and 0.1 increases in accuracy at ε ≈ 0.2 for the
convolutional neural network baseline. These increases are not ubiquitous across all ε, though, as all defended models
tended to do significantly worse than their undefended counterparts in low-epsilon (ε < 0.1) environments. This is
likely a form of trade-off between overall robustness and accuracy on clean inputs which is standard in adversarial
defense environments, and is therefore not worrying. Future work may explore if it is possible to eliminate it, or

7

Individual Fairness for Adversarial Robustness Page 8 of 12

decrease it significantly: in our testing, all the aforementioned extensions tried worsened the gap, though, so we do not
believe this is an issue that can be easily remedied.

That being said, the fact that the defense works better on the harder dataset of the two is encouraging, since it means
that it is more likely to succeed on noisier, real-world datasets than it would have been if it had only succeeded on
MNIST. Coupled with the previous remarks on the tradeoff, it is likely that this defense could see applications in very
noisy environments such as TinyML, where cameras and other sensors are limited in their resolution by their size and
the amount of power they are allowed to draw (especially since, as proven by Proposition 1, the runtime cost of this
intervention is minimal).

Similarly, it is positive that there was comparable performance across the two different types of architectures, especially
CNNs. Even with the recent more widespread use of vision transformers, CNNs remain the dominant architecture for
computer vision tasks and research, so it is imperative that proposed adversarial defenses work on them. Interestingly,
however, in CNNs we also see an increased range in which the defense is worse than the defenseless networks (especially
on the MNIST dataset): this is likely due to CNNs generalizing better in the first place due to their inbuilt location
invariance, so they are intrinsically more adversarially robust than their fully-connected counterparts.

In terms of the results of the main experiment’s extensions, in Figure 3 (figures 3, 4, 5 can be found in Appendix B) we
find that modifying the αj’s has a drastic effect on the accuracy if they are loosened by 0.1, dropping it dramatically
even at lower ε (likely because we allow more noise than there actually is in the dataset, leading to the misclassification
of many more elements than would be misclassified previously). In contrast, increasing them by 0.1 slightly increases
performance in lower-epsilon environments, but makes the defended network drop below chance levels of accuracy
sooner (at ε ≈ 0.25 instead of ε ≈ 0.3). Setting all the αj’s to the same value seems to have a similar effect. These are
both likely due to the fact that stricter noise constraints work well in low-noise (and thus low-ε) environments, but then
work much worse when more noise is introduced. Future work may explore tuning the αj’s to both the dataset and the
expected ε that could increase the accuracy of the models and finetune them for a specific task.

As can be seen in Figure 4, increasing the centroids increases the tradeoff between accuracy in low-epsilon environments
and robustness. This leads the models to have approximately chance levels of accuracy at all ε ≤ 0.5, but also leads it
to remain stable, therefore beating both the undefended network and a network defended by a single set of centroids by
significant margins in high-epsilon environments. Intuitively, this makes sense by considering this trade-off: the more
diverse examples of a Future work here may concentrate on better centroid selection (or eliminate the requirement that
the defender has access to the centroids, and have them generate and optimize for synthetic centroids).

Finally, layer bias. Figure 5 shows that changing the layer bias either way (to favor earlier or later layers) has minimal
effects. This is an interesting result in and of itself, because it suggests that unperturbed information which can be used
to recover the true class is present relatively uniformly across the network, since favoring neither favoring information at
the beginning or the end of the network increases its accuracy. Further work can use this insight to see if we can reduce
the (non-asymptotic) time complexity further by excluding some fraction of the layers from the defense and seeing if
the result still holds: this goes against the concept of this defense if done en masse, but it would not be unreasonable
to believe that cutting some layers out (the most high-dimensional ones, for instance) may lead to reductions in the
defense’s empirical runtime while also maintaining the gains in accuracy.

In conclusion, in reformulating image classification as an individual fairness problem, we have presented an inference-
time adversarial defense for classification, which brings modest gains in accuracy across a range of ε values for the
same asymptotic runtime as regular inference. We have also shown this defense to work across two datasets of differing
difficulty and across two different neural network architectures, suggesting that the defense may be applicable to a broad
range of low-resource computer vision applications and research. Weaknesses that further work may tend to are a more
systematic formulation of the metric for fairness between individuals d that allows for less heuristic picking of the αj’s
as well as trying to decrease the tradeoff between accuracy on relatively clean examples and robustness in high-epsilon
environments. The work may also be improved by considering some of the extensions we have described (changes
in the value of the metric, different methods of centroid picking, and different layer biases) and seeing how they may
empirically lead to better runtime and/or accuracy, as well as trying to implement the defense on vision transformers to
see how well it interfaces itself with self-attention mechanisms.

Acknowledgements & Data Availability

I would like to thank Prof. Dwork for the helpful conversations about theoretical grounding for the project and for the
encouragement to pursue this over a simpler, more straightforward project. Additionally, I would like to thank all the
TFs for their help throughout the semester and with sporadic questions about the project. Thank you all for a fantastic
class! All of the code and centroids used can be found in the following GitHub repo: vpepe/CS226r Project.

8

https://github.com/vpepe/CS226r-Project

Individual Fairness for Adversarial Robustness Page 9 of 12

Appendix A

5.1 Distance Metric Parameters

For the results above, the following distance metrics were used for MNIST and Fashion-MNIST:

MNIST Fashion-MNIST
d(c0, x) = 0.3 d(cT−shirt, x) = 0.2

d(c1, x) = 0.4 d(cTrouser, x) = 0.2

d(c2, x) = 0.35 d(cPullover, x) = 0.3

d(c3, x) = 0.3 d(cDress, x) = 0.2

d(c4, x) = 0.35 d(cCoat, x) = 0.35

d(c5, x) = 0.3 d(cSandal, x) = 0.3

d(c6, x) = 0.3 d(cShirt, x) = 0.3

d(c7, x) = 0.4 d(cSneaker, x) = 0.25

d(c8, x) = 0.3 d(cBag, x) = 0.2

d(c9, x) = 0.3 d(cAnkleBoot, x) = 0.2

5.2 Tabular Data

ε Defenseless Accuracy Defended Accuracy Defended (Loose) Accuracy

0.0 0.95 0.53 0.61
0.1 0.18 0.42 0.45
0.2 0.05 0.18 0.20
0.3 0.02 0.11 0.11
0.4 0.01 0.07 0.08
0.5 0.00 0.06 0.07

Table 1: Tabular Results for the FC NN on MNIST

ε Defenseless Accuracy Defended Accuracy Defended (Loose) Accuracy

0.0 0.84 0.36 0.66
0.1 0.11 0.28 0.47
0.2 0.00 0.18 0.28
0.3 0.00 0.11 0.18
0.4 0.01 0.03 0.11
0.5 0.01 0.03 0.07

Table 2: Tabular Results for the FC NN on Fashion-MNIST

ε Defenseless Accuracy Defended Accuracy Defended (Loose) Accuracy

0.0 0.95 0.60 0.71
0.1 0.62 0.51 0.62
0.2 0.14 0.23 0.34
0.3 0.04 0.12 0.17
0.4 0.00 0.08 0.09
0.5 0.00 0.05 0.05

Table 3: Tabular Results for LeNet-5 on MNIST

9

Individual Fairness for Adversarial Robustness Page 10 of 12

ε Defenseless Accuracy Defended Accuracy Defended (Loose) Accuracy

0.0 0.74 0.41 0.65
0.1 0.17 0.28 0.44
0.2 0.00 0.17 0.26
0.3 0.00 0.10 0.16
0.4 0.00 0.08 0.12
0.5 0.00 0.08 0.10

Table 4: Tabular Results for LeNet-5 on Fashion-MNIST

Appendix B

5.2.1 Different Metric Values

In this section, we tested the performance of the defense across three different new scenarios: setting all the αj’s to the
same value, 0.3, and shifting the values seen above up by 0.1 (resulting in 0.2, 0.25 and 0.3 being used) or down by 0.1
(resulting in 0.4, 0.45 and 0.5 being used).

Figure 3: Adversarial defense accuracy with different αj . Panel (a): Baseline (see Figure 1). Panel (b): All αj set to
0.3. Panel (c): All αj in the baseline increased by 0.1. Panel (d): All αj in the baseline decreased by 0.1.

5.2.2 More Centroids

In this experiment, we relaxed the condition in Section 3.1 that both the attacker and the defender only have access to
one set of centroids, and extended it to 2 or 5 sets of centroids to see how using more than one set at the same time
would affect the defense.

5.2.3 Layer Bias

In this section, we biased the fairness constraints towards different parts of the neural network. To do this, instead
of adding 1 to a class’ counter every time that class was considered fair, for some layer number ℓ we added eℓ when
biasing towards the later layers in the network, or e−ℓ when biasing towards earlier layers. These are exponential
increase or decay functions, making each layer’s contribution exponentially more or less important than the last.

10

Individual Fairness for Adversarial Robustness Page 11 of 12

Figure 4: Adversarial Defense Performance with regards to different numbers of sets of centroids. Panel (a): Baseline
(1 set of centroids). Panel (b): 2 sets of centroids. Panel (c): 5 sets of centroids.

Figure 5: Adversarial defense performance with differing layer biases. Panel (a): Early layer bias (e−ℓ). Panel (b):
Baseline (no bias) Panel (c): Late layer bias (eℓ).

References

[Carlini and Wagner, 2017] Carlini, N. and Wagner, D. (2017). Towards evaluating the robustness of neural networks.

[Dwork et al., 2011] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2011). Fairness through awareness.

[Fleisher, 2021] Fleisher, W. (2021). What’s fair about individual fairness? In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, AIES ’21. ACM.

[Fukushima, 1969] Fukushima, K. (1969). Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333.

[Goodfellow et al., 2015] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial
examples.

[Kemp et al., 2007] Kemp, C., Perfors, A., and Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical
bayesian models. Developmental Science, 10(3):307–321.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551.

[Lecun et al., 1998] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[Madry et al., 2019] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2019). Towards deep learning
models resistant to adversarial attacks.

[Papernot et al., 2016] Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. (2016). Distillation as a defense to
adversarial perturbations against deep neural networks.

[Robbins, 1951] Robbins, H. E. (1951). A stochastic approximation method. Annals of Mathematical Statistics,
22:400–407.

[Rothblum and Yona, 2018] Rothblum, G. N. and Yona, G. (2018). Probably approximately metric-fair learning.

11

Individual Fairness for Adversarial Robustness Page 12 of 12

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). Imagenet large scale visual recognition challenge.

[Strubell et al., 2019] Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for deep
learning in nlp.

[Szegedy et al., 2014] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R.
(2014). Intriguing properties of neural networks.

[Touvron et al., 2023] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023). Llama: Open and
efficient foundation language models.

[Xiao et al., 2017] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms.

[Xu and Tenenbaum, 2007] Xu, F. and Tenenbaum, J. B. (2007). Word learning as bayesian inference. Psychological
Review, 114(2):245–272.

12

	Introduction
	Related Work
	Methods
	Threat Modeling
	Adversarial Defense
	Individual Fairness Formalization
	Algorithm

	Neural Network Architectures

	Results
	Baselines
	Theoretical Results

	Discussion
	Distance Metric Parameters
	Tabular Data
	Different Metric Values
	More Centroids
	Layer Bias

