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Abstract
Distinctive feature theory in phonology is notorious for not
representing non-English languages accurately, and for hav-
ing too many features to be cognitively plausible, due to be-
ing arbitrarily chosen by Chomsky and Halle in the 1960s
(Chomsky & Halle, 1968). In this paper, we attempt to rectify
this by proposing a sparse autoencoder-driven set of distinctive
feature, through a graph representation of the 50 most com-
mon phonemes across languages (Cunningham, Ewart, Riggs,
Huben, & Sharkey, 2023). We bring the number of features
used down from 28 to 15 while retaining important structures
within human language, and find that some featutes recog-
nized by phonologists are empirically present in real-world
data, while others are likely artificially manufactured to better
describe English. However, our set cannot represent natural
classes as richly, and we suggest using it for historical analysis
of language more than analysis of contemporary language.

Introduction
Phonology is the branch of linguistics concerned
with the study of the sounds of language, and how
they change across time (diachronic phonology) or
across words (synchronic phonology). As an ex-
ample, imagine pronouncing the words ‘cut’ and
‘cutter’; American speakers will pronounce the first
with a hard ‘t’ sound at the end, but will not do
the same with the ‘t’ in the second, pronounc-
ing it like something closer to a ‘d’ or ‘r’. This
is called intervocalic tapping, and is one of the
most common sound changes in synchronic En-
glish, capturing this change in pronounciation of
both ‘t’ and ‘d’ sounds when placed in between
vowels (Ladefoged, 1993). It’s not difficult to ac-
cept that ‘t’ and ‘d’ may be considered similar
sounds by phonologists, but why exactly are they
similar? What do they have in common that makes
them more similar to each other than to ‘a’?

To answer this question, we can use distinc-
tive features: distinctive feature theory represents
each sound (we’ll use the technical term ‘phoneme’
from here on) as a unique vector of binary features
representing where and how the sound is produced
in the human vocal tract. We can then keep track
of how these features change in specific environ-
ments, and call those our ‘rules’. As an example,
see the features of the phonemes for /t/1 and /d/

1We make use of International Phonetic Alphabet (IPA) notation
in this paper: // around a symbol denotes the sound that symbol
represents in the IPA, e.g. /k/ is the sound that ‘car’ begins with.
We do not assume familiarity past this, and will explain the relevant
parts when needed.

(we only write down the features present in each
phoneme for clarity, ignoring the ≈ 20 that are not):

/t/ =

+consonantal
+coronal
+anterior

 /d/ =


+consonantal

+voice
+coronal
+anterior


We can therefore group up both /t/ and /d/ in one

class by selecting all phonemes that contain [+con-
sonantal, +coronal, +anterior] (Chomsky & Halle,
1968). Note that since we did not specify a [+voice]
constraint, we are picking up both phonemes with
[+voice] and without it, so we are picking up both
/t/ and /d/. Additionally, note that this only in-
cludes /t/ and /d/ by construction, since these fea-
tures were constructed to follow common sound
patterns in English (i.e. there is no other phoneme
that is +consonantal, +coronal and +anterior, so our
group will only contain these two phonemes). Such
collections of phonemes are called natural classes;
here, /t/ and /d/ form the natural class [+consonan-
tal, +coronal, +anterior].

Noting that the ‘tap’ sound that these are pro-
nounced as has the IPA character /R/, we can write
our intervocalic tapping rule as:

+consonantal
+coronal
+anterior

→ /R/

.
As can be seen above, these features work well

for simple, frequent English phonological rules,
since the system was designed around them post-
hoc. However, this is not true for all languages,
and distinctive feature theory frequently has to be
amended to make the features work in other lan-
guages. A famous example of this can be found
in Geert Booij’s ‘Phonology of Dutch’, where the
author invents the feature [+French] to describe
phonemes loaned from French, since they are
granted specific exemptions from standard Dutch
phonology (Booij, 1999). Additionally, the sheer
number of features (28) makes the standard set of
features utilized also cognitively implausible: is



phonology really a space with 28 degrees of free-
dom, especially when so many features are mutu-
ally exclusive with others, as well as given the con-
straints on human speech production due to human
anatomy (Lisker & Abramson, 1971)?

The goal of this project is therefore to come up
with a feature set that is more likely to work for
languages that are not necessarily English, and is
more cognitively plausible. For the purposes of this
project, we will determine a set to be more cogni-
tively plausible if it has fewer features (we want
to cut them down by at least 50%), and has sim-
pler contrasts, however we may define them. We
would also like the features to still be able to de-
scribe common sound shifts, and, ideally, we would
derive these new features with no influence from
the standard feature set at all, in order to ensure the
least amount of bias possible.

To achieve this, we propose a sparse-
autoencoder-based system, which utilizes his-
torical sound shift data represented as a graph as
its ground truth and through which we will attempt
to bottleneck the number of features, which we
will then interpret to extract our desired feature set

Related Work
Linguistics
We will first give some background on the linguis-
tic aspects of this paper: if one is already familiar
with phonology, this part can be skipped.

Phonology As mentioned above, phonology is
the study of the sounds used in human language.
For this paper, the relevant portions are the techni-
cal names of the places and modes of articulation
that phonologists utilize, as well as some Interna-
tional Phonetic Alphabet (IPA) symbols.

The places of articulation necessary here are only
the most coarse-grained: labial, coronal, and dor-
sal. A ‘labial’ sound is one produced with the lips,
a ‘coronal’ sound is one produced with the front of
the tongue, and a ‘dorsal’ sound is one produced
with the back of the tongue. Examples of labial
sounds are /b/ or /p/, examples of coronal sounds
are /t/ and /d/, and examples of dorsal sounds are
/k/ and /g/. Notice how in pronouncing them one’s
tongue moves further and further back: these three
areas roughly correspond to sounds produced at the
front of the mouth, in the middle of the mouth, and
at the back of the mouth (Hayes, 2008).

The modes of articulation that we will use here
are plosives, liquids, nasals, fricatives, and vow-
els. ‘Plosives’ are made by closing the mouth com-
pletely (such as the sounds listed above) and have
self-explanatory Latin characters as their IPA sym-
bols (except /P/, the glottal stop, the sound denoted

by the hyphen in ‘uh-oh!’). ‘Liquids’ are made by
moving sound around the sides of the tongue: these
are mostly /l/, /r/ and their derivatives, which, in the
IPA, tend to have a lot of tails, e.g. /í/, the retroflex
lateral approximant, which is like an /l/ sound but
further back in the mouth, or /K/, the r-sound in
French. ‘Nasals’ are sounds made with the use of
the nose: think /n/, /m/, and -ng sounds, denoted
by /n/. ‘Fricatives’ are sounds that use turbulence,
like /f/ or /v/, and are divided into sibilant and non-
sibilant, with sibilant sounds being sounds like /s/
and /z/. There are more fricatives than any other
mode of articulation on the IPA, so there are a lot of
unconventional symbols used here: /T/ and /ð/ for
‘th’, /γ/, /χ/, and /Φ/ and /β/ for various ‘ph’ or ‘gh’
sounds. Finally, vowels; these are self-explanatory,
they are sounds made with the mouth completely
open, and are sounds like /u/, /a/, /o/, /y/, /@/ (an
‘uh’ sound), or /U/ (an ‘oo’ sound) (Hayes, 2008).

Distinctive Feature Theory Distinctive feature
theory is a theory of phonology developed by
Noam Chomsky and Morris Halle in 1968 in their
book ‘The Sound Pattern of English’ (henceforth
SPE) (Chomsky & Halle, 1968). It breaks down
any human sound into a vector of 28 binary fea-
tures, which we will briefly explain.

First come the manner features, [consonantal],
[sonorant], [continuant], [delayed release], [ap-
proximant], [tap], [trill], and [nasal]. These are
consonant-only features, used to split up modes of
articulation: most consonants are [+consonantal]
(except /h/), and sonorant sounds are sounds that
are not plosives (i.e. liquids, nasals and fricatives),
continuants are sounds that do not ever close any
part of the mouth completely (i.e. anything but
plosives and nasals, since nasals close the velum,
a part of the mouth that connects to the nose). [de-
layed release] is a marker for most fricatives, [ap-
proximant] is all fricatives and some other sounds
where the lips come together but do not close, [tap]
and [trill] are used for specific /t/-like and /r/-like
sounds, and [nasal] is a marker for all nasal sounds
(Chomsky & Halle, 1968).

Then the laryngeal features: [voice] marks if the
sound is produced by vibrating the vocal chords,
i.e. /f/ is [-voice] but /v/ is [+voice] (one can feel
this by holding a hand to their throat as they say
these and feel the vibrations), and [spread glottis]
and [constricted glottis] are used for very specific,
non-standard sounds like implosives (which do not
exist in American English) or the glottal stop /P/.

Finally, the 14 place features. 5 of these are
mainly used in vowels (high, low, front, back,
tense) and describe where the tongue is in the
mouth as the sound is produced, and the others



rely on features like [labial], which, if present, di-
vided into [round] (rounded lips) and [labiodental].
Then, [coronal] divides into [anterior] (which uses
the front of the mouth, the palate’s ridges), [dis-
tributed] (uses the side of the tongue), and [stri-
dent] (loud fricatives, /s/, /z/ et similia). Finally,
we have [lateral], another feature for airflow around
the sides of the tongue, and [dorsal].

Distinctive features as described in SPE (and
most subsequent works) have been criticized on ac-
count of being cognitively implausible given their
high number, as well as their anglocentric bias
(most languages do not distinguish between /t/ and
/T/, for example) (Mielke, 2004).

Computer Science
(Sparse) Autoencoders An autoencoder is a neural
network architecture where the output’s goal is to
reconstruct the input. To do this, the hidden layers
are intentionally more narrow (i.e. have fewer neu-
rons) than the input and output layers: this ‘bottle-
neck’, as it is known, forces the network to learn a
meaningful representation of the input to be able to
reconstruct it after the bottleneck (Kramer, 1991).

Sparse autoencoders are a type of autoencoder
that enforces a sparsity constraint on the bottleneck
layer: this can be thought of almost as a regulariza-
tion on the activations of a layer in the middle of the
network rather than one at the output. These were
most recently and famously the subject of cunning-
ham 2023, where it was shown that enforcing the
sparsity constraint, if well-calibrated, gives more
intepretable features than non-sparse alternatives.

Graph Representation Learning Broadly
speaking, graph representation learning is a type of
statistical learning where the input is represented
as a graph’s vertex or neighborhood, and the
learner’s objective is to learn the main features
of the neighborhood in order to further some
downstream task (in our case, dimensionality
reduction of the input data) (Hamilton, 2020).

In our case, our network will be fed a ver-
tex (the connections from one phoneme to all the
other phonemes it patterns with, phonetically) and
will have to infer how those connections can be
compressed into a smaller number whilst retaining
some sparsity in the final representation.

Dataset The dataset containing the sound shifts
is Index Diachronica, a database made to catalog
historical language data for those wishing to con-
struct fictional languages as a hobby. Notwith-
standing the unacademic nature of the database,
though, the sound shifts are meticulously refer-
enced and rooted in academic texts, so I have no
reason to doubt the data. I just downloaded their

Figure 1: A detail of the phoneme graph, the neigh-
borhood of the phoneme /a/

integral .csv from the website and used that data,
containing 13000 sound shifts in total across a va-
riety of languages and across time.

Methods
Graph Construction We went through Index
Diachronica’s database of sound changes: we
will make reference to these by dividing sound
shifts into a ‘starting phoneme’ and an ‘ending
phoneme’, meaning a phoneme before and after it
undergoes the sound shift. Thus, for every start-
ing phoneme, we kept track of all of its ending
phonemes across all the sound shifts it was a part
of, and counted how many times each one ap-
peared. We then built our graph considering the
starting phonemes as our vertices, and connected
a phoneme x with some other phoneme y if y was
x’s ending phoneme in at least 10% of the sound
shifts x was a part of. Edges were unweighted: we
made no distinction between the phoneme having
a frequency of barely over 10% or being the only
phoneme the starting phoneme turned into2.

Since the features will be created directly
from the sound shift data, low-quality or under-
documented phoneme data could cause the autoen-
coder to settle on an awkward representation and
inject noise into the features it settles on as the
most representative of each phoneme, so it had
to be removed. To make sure every phoneme
used to extract features was well-represented in
the sound shift data, we therefore only kept the
top 50 most common phonemes represented in hu-
man language as detailed in (Moran & McCloy,

2This was mainly an engineering consideration since the autoen-
coder stopped converging when we tried to factor in relative fre-
quency, so this is something future work can explore.

https://chridd.nfshost.com/diachronica/


2019) (a reputable database for the frequency of
linguistic features across languages) that appeared
at least 15 times in Index Diachronica (the full list
of phonemes kept can be found in the appendix).
Autoencoder Details We used a custom autoen-
coder architecture, which we intentionally kept to
three layers: the input layer, the bottleneck, and the
output layer. This choice was made to promote in-
terpretability in the network; papers like (Bricken
et al., 2023) and (Cunningham et al., 2023) sug-
gest that, together with a sparsity constraint on the
autoencoder, shallow networks make it easier for
more interpretable features to arise on account of
the simpler non-linear relationships that we allow
(we can think of this almost as an intentional con-
straining of the expressive power of the network),
so arranging our network like this makes it easier
for us to be able to see specifically what the features
will be during the inference part of the project.

The autoencoder’s bottleneck’s width was varied
from 10 to 20 in preliminary experiments, but we
found that a width of 15 (i.e. the use of 15 features
by the autoencoder to describe the phonemes) pro-
vided the best results, with some important features
not appearing as cleanly in the results when the
width too small, or an excessive number of repeti-
tive features when the width was too large.

We used sigmoid activation functions to go from
the input layer to the bottleneck layer and from the
bottleneck to the output layer; this clips the activa-
tions between 0 and 1 and had the added benefit of
making the interpretable as probabilities of a cer-
tain feature being activated.

The goal of the autoencoder is to take in a
phoneme, represented by its connections to the
other phonemes, pass it through the bottleneck
to reduce the dimensionality of its very sparse
connections, and then reconstruct the vertex on
the other side of the autoencoder. We therefore
have only 50 pieces of input data (one for each
phoneme), and one epoch will thus be defined as
one pass through all 50 phonemes.

The autoencoder was trained with an AdamW
optimizer (Loshchilov & Hutter, 2019) with the de-
fault PyTorch parameters (a learning rate of 10−3,
weight decay of 0.01) – changing these parame-
ters was tried in preliminary experiments, but it did
not lead to improvements, so the default parame-
ters were kept. We also trained it for 4000 epochs
or until it reached perfect reconstruction accuracy,
whichever came first: this may seem excessive and
like it would lead to overfitting, but given our small
amount of input data and that neural network loss
convergence usually takes thousands of data points
even for very shallow networks, this type of sample

complexity is reasonable.
Additionally, overfitting was not a point of con-

cern for this project: these 50 phonemes have been
stable for thousands of years, and barring some in-
dividual variation in their actual production from
speaker to speaker, it is extraordinarily unlikely
that new phonemes will arise that our model will
not take into consideration, especially in the long
term (new phonemes being used would have to
mean a large-scale shift in the way humans pro-
duce language for them not to be captured within
IPA symbols that already exist).
Loss Function The characteristics of the con-
struction of the graph and the autoencoder as de-
scribed above also constrain the loss function in
usual ways. As is typical for classification tasks,
our base loss function was an element-wise Cross-
Entropy Loss applied to the autoencoder’s output
to measure its performance. This loss function was
chosen because of the graph representation aspect
of this project: an edge between vertices can ei-
ther exist (1), or not exist (0), so we can frame this
as a classification task between these two and train
the network that way. Other loss functions, such
as mean squared error or Kullback-Leiber Diver-
gence were also tested, but they were more inaccu-
rate than cross-entropy loss, as well as being badly
defined in this context (this is not a regression task,
an output being 1.1 or −1 are not well-defined in
this context and should just be clipped to 1 or 0
anyways, making cross-entropy loss most useful).

We then apply two modifications to the cross-
entropy loss, to make it fit for our purpose.
First we apply a sparsity constraint as outlined in
(Cunningham et al., 2023) as mentioned above,
in order to further increase the interpretability of
the network’s features. We apply this constraint
through an L1 penalty to the autoencoder’s mid-
dle layer, multiplied by some α = 0.001. This
value was tuned to be similar to the paper’s α =
0.000864, and empirically adjusted for the specific
problem setting, by seeing that values above 0.001
removed too much structure from the underlying
data, and values below it admitted too much noise
into the features to make them easily interpretable.

Second, since we specified an edge exists be-
tween two phonemes in the graph to be learned if
and only if one is an ending phoneme for the other
at least 10% of the time, it easily follows that any
phoneme can have at most 10 neighbors. Given
there are 50 phonemes and we feed the adjacency
matrix representation into the network as our input
data, this leads to input data that is quite sparse.
Initial tests, thus, had the model ‘learn’ to always
output 0, since it would result in a small loss re-



gardless. To combat this, in calculating the loss,
we don’t calculate the loss between the input x and
its reconstruction x̂, but between the input x and
2.5x̂+ 1. This method ensures that every true 0 in
the input gets updated to 1 in calculating the loss
(and every 1 gets updated to 2.5, ensuring that the
difference between a 1 and a 0 is still there, such
that we don’t end up with outputs that are just a
vector of 50 ones), increasing the penalty for al-
ways predicting 0 and thus coaxing the model into
outputting numbers that are not 0 and learning a
useful representation of the data.

Inference Given the sigmoid activations that
characterize the bottleneck layer, the standard in-
terpretation of the features would be as probabili-
ties: if for some input a feature is more than 0.5,
then we round that to 1 and say it is ‘active’, and
if it is less than 0.5 we round it to 0 and say it is
‘infactive’. However, this relies on the assumption
that the activations are distributed along the entire
[0,1] interval, so there is a clean separation at 0.5
about what is and is not part of a feature. This as-
sumption was not true in this data: we found fea-
tures where the separation is much more natural if
centered at a threshold that is not 0.5, where setting
the threshold at 0.5 actually takes away some nu-
ance in the data, and adds noise that can be avoided.
As an example, in Fig. 2, we can see that Feature
9 in the results clearly has two clusters with a sep-
aration at 0.7, not 0.5.

Figure 2: A histogram of the activations of Feature
9 over the 50 input phonemes

To separate these features more cleanly, there-
fore, we introduce a Gaussian Mixture Model
(GMM) to cluster the data into two clusters3. We

3There are rare cases of feature activation histograms that look
tri-modal more than bimodal, but these do not show up in the final
results set, so we decided to make the mixture model assume all data
was bimodal.

then separate each datapoint into an ‘inactive’ or
‘active’ feature depending on the cluster that it
was assigned to during the learning of the mixture
model.

Results
Figure 3 showcases the best results obtained in
the experiment, the ones we will be discussing at
length. Results from other experiments, like other
sparsity levels and a 10- and 12-wide autoencoder,
will be included in the appendix and discussed in
the discussion section of this paper, but to a lesser
extent. All autoencoders discussed reached perfect
reconstruction accuracy, meaning we can be sure
they learned some meaningful structure in the data.

From the results of Figure 3 (Panel (c)’s results,
specifically), we can extract the following features.
We named them pre-emptively to not have to repeat
them once more in naming them, these names will
be discussed in the ‘Discussion’ section4:

Front (Labial/Coronal): [’a’, ’i’, ’e’, ’o’, ’E’, ’@’,
’I’, ’A’, ’æ’, ’y’, ’g’, ’p’, ’b’, ’t’, ’d’, ’m’, ’B’, ’f’,
’v’, ’s’, ’z’, ’Z’, ’S’, ’w’]

Middle (Coronal/Dorsal): [’U’, ’g’, ’t’, ’d’, ’ú’,
’c’, ’n’, ’n’, ’ñ’, ’F’, ’ð’, ’s’, ’z’, ’Z’, ’S’, ’x’, ’R’,
’l’]

Plosives, Fricatives: [’E’, ’æ’, ’q’, ’g’, ’p’, ’t’,
’d’, ’c’, ’ï’, ’F’, ’ð’, ’f’, ’s’, ’z’, ’Z’, ’S’, ’x’, ’K’,
’P’, ’h’]

Non-i vowels, liquids, fricatives, voiced stops:
[’u’, ’a’, ’o’, ’O’, ’@’, ’U’, ’y’, ’q’, ’g’, ’B’, ’ð’, ’X’,
’f’, ’v’, ’z’, ’K’, ’r’, ’R’, ’í’, ’w’, ’l’, ’h’]

Every Vowel, Back consonants: [’u’, ’a’, ’i’, ’e’,
’o’, ’E’, ’O’, ’@’, ’I’, ’U’, ’A’, ’æ’, ’W’, ’y’, ’c’, ’ñ’,
’ï’, ’X’, ’K’, ’j’, ’ó’]

Nasals, Fricatives: [’q’, ’m’, ’n’, ’n’, ’ï’, ’B’, ’X’,
’f’, ’v’, ’s’, ’Z’, ’x’, ’G’, ’K’, ’R’, ’P’, ’w’, ’h’]

Front vowels, Non-Plosives: [’a’, ’i’, ’e’, ’E’, ’@’,
’I’, ’æ’, ’q’, ’z’, ’x’, ’G’, ’R’, ’ó’, ’P’, ’h’]

Stops, Non-sibilant fricatives: [’I’, ’A’, ’W’, ’q’,
’b’, ’t’, ’d’, ’ú’, ’c’, ’F’, ’ð’, ’X’, ’v’, ’G’, ’K’, ’í’]

Non-mid Vowels, Fricatives: [’u’, ’o’, ’O’, ’U’,
’A’, ’y’, ’p’, ’b’, ’m’, ’ï’, ’B’, ’F’, ’f’, ’v’, ’s’, ’Z’,
’S’, ’x’, ’G’, ’í’, ’w’]

Nasals, front vowels, non-front consonants: [’E’,
’I’, ’W’, ’t’, ’d’, ’ú’, ’c’, ’n’, ’n’, ’ñ’, ’ï’, ’ð’, ’z’,
’K’, ’j’, ’r’, ’R’, ’ó’, ’í’, ’l’]

Front Vowels, Non-mid consonants, liquids: [’e’,
’E’, ’I’, ’W’, ’y’, ’p’, ’b’, ’ú’, ’m’, ’n’, ’B’, ’F’, ’f’,
’r’, ’R’, ’ó’, ’í’, ’P’, ’l’, ’h’]

4Note: Most of these characters are not supported in default
LATEX , so I had to manually import them. Apologies if any are miss-
ing.



Back vowels, non-front consonants: [’o’, ’O’, ’U’,
’A’, ’ú’, ’c’, ’s’, ’Z’, ’S’, ’x’, ’R’, ’l’]

All vowels, mid consonants: [’u’, ’a’, ’i’, ’e’, ’o’,
’E’, ’O’, ’@’, ’I’, ’U’, ’W’, ’y’, ’g’, ’p’, ’t’, ’d’, ’ú’, ’n’,
’ï’, ’B’, ’ð’, ’Z’, ’ó’]

Non-Middle Vowels/Plosives: [’u’, ’a’, ’e’, ’o’,
’E’, ’O’, ’@’, ’U’, ’A’, ’æ’, ’W’, ’y’, ’q’, ’k’, ’g’, ’b’,
’m’, ’n’, ’n’, ’X’, ’G’, ’P’]

Front Vowels, Liquids and Nasals: [’a’, ’i’, ’e’,
’@’, ’I’, ’A’, ’æ’, ’p’, ’b’, ’c’, ’m’, ’n’, ’n’, ’ñ’, ’F’,
’f’, ’v’, ’j’, ’P’, ’w’, ’l’, ’h’]

Figure 3: The raw feature scores extracted from
the autoencoder. Panel (a): Raw scores, Panel (b):
Rounded scores (0.5 threshold), Panel (c): GMM-
rounded scores. Color code: yellow indicates a
score ≈ 1, purple indicates a score ≈ 0.

Discussion
Now that we have a coherent set of features, we
can discuss the results obtained, how much we
achieved our goal of finding a better feature set for
distinctive feature theory, and what these features
may mean for the way humans perceive phonemes.

Firstly, the way the features were named. No-
tice that, differently from the original SPE features,
where each feature is cleanly described by a single
characteristic (even though it may not be an obvi-
ous one), here most features contain a mixture of
more than one characteristic, with only the first two
features, ‘Front’ and ‘Middle’, being as elegant as
the SPE features. All of the others are a mixture of
different modalities of sound production, such as
Feature 4, ‘Non-i vowels, liquids, fricatives, voiced

stops’, or different locations in the mouth, such as
‘Front Vowels and Nasals’, Feature 15.

These messy names imply that the coding de-
rived by the autoencoder is completely different
from the SPE coding. If we derive features solely
from historical data, thus, this suggests that SPE is
very different from the trends available in the actual
data, and is a very heavily finetuned set of features
made to be as elegant as possible for English.

For instance, notice that all the vowel-exclusive
location features are completely absent: conso-
nants and vowels both share three characteristics
based on where they are produced in the mouth,
‘front’, ‘mid’, and ‘back’ and their combinations
(like ‘front’ and ‘back’ joining to make ‘non-mid’,
etc.). Additionally, [+voice] is not a clear-cut char-
acteristic: we don’t have a feature that clearly sep-
arates the unvoiced /p/, /t/, /k/, /f/ etc. from the
voiced /b/, /t/, /g/ and /v/, respectively. This is
quite odd: voice is usually considered one of the
simplest and most ubiquitous features given it has
a very clear physical trigger (the vibration of the
vocal cords). Evidently, though, this suggests that
when we compare it to historical data, voicing was
not as widespread across languages as it is today.
In fact, this matches up with historical linguistic
intuition: Classical Latin lacked a distinction be-
tween /f/ and /v/ or /s/ and /z/, and proto-Greek had
no fricatives that were not /s/. Thus, we believe it
is reasonable to chalk up this difference to histor-
ical data, but this difference between the common
characteristics of language today and language his-
torically leads us to posit that the feature set recov-
ered by the autoencoder may be more useful as a
tool for historical analysis more than contemporary
language.

This idea that the feature set recovered may be
more useful for historical analysis is further rein-
forced by collisions in feature space: even though
the autoencoder itself is able to have perfect recon-
struction accuracy for the features, once we apply
the GMM we get phonemes that look exactly the
same. As an example, /t/ and /d/, in this set of
results, share exactly the same features, and are
not distinguishable. This is an issue, but one that
can be fixed by small manual edits of the features,
such as adding either one of them to the ‘Non-
mid Vowels, Fricatives’ feature, where it would fit,
and therefore find a difference that way. How-
ever, historically, /t/ and /d/ pattern together in-
credibly often, so it is not surprising that, once
we take a more nuanced look at the feature space,
the two are literally indistinguishable, especially
since there exist languages today that do not dis-
tinguish them (Passamaquoddy and Hawaiian in



North America, for instance) (Leavitt, 1996). An-
other quirk is the placement of the phoneme /k/,
which is only present in Feature 14, ‘Non-Middle
Vowels/Plosives’ and nowhere else, which is quite
awkward (/k/ is not just a non-middle plosive, it
shuld also b a back plosive, a back consonant, etc.).

This being said, there are also significant simi-
larities between the SPE set of features and ours.
Both have a very clear distinction between conso-
nants and vowels: Feature 5, ‘Every Vowel, Back
consonants’, includes a very clean ’vowel’ feature
that includes all the vowels in the training data, for
example. This suggests that some features found
in SPE, and the way linguists treat language, are
universal to human languages across time, and it is
correct to include them in a feature set that suppos-
edly holds features to describe every single human
phoneme possible. There also seems to be a set of
distinctions that traces the ‘sonority hierarchy’, a
phonological concept dividing phonemes by how
open the mouth is while producing them, going
from vowels (most open), to liquids, to nasals, to
fricatives, to stops (most closed) (Everett, 1996). In
the feature set recovered, phonemes seem to appear
in the same feature only if they are close to each
other in this hierarchy: there is a ‘Nasals, Frica-
tives’ feature, a ‘Front Vowels, Liquids and Nasals’
feature, a ‘Stops and Non-sibilant fricatives’ fea-
ture, but not a ‘Vowels and Stops’ feature, or a
‘Liquids and Fricatives’ feature. Phonemes placed
differently in the sonority hierarchy are thus com-
monly placed in different features, indicating that
there is some natural contrast between them.

In terms of what this set predicts about human
phonetics across time and across languages, we
can say that the set we have recovered suggests
there should be a much greater emphasis on the
place of articulation for phonemes, since almost
every feature includes more than one mode of ar-
ticulation, but only one place of articulation (or
one for vowels and one for consonants). Addition-
ally, while consonants and vowels should be seen
as very distinct sets of phonemes, each patterning
mostly with phonemes within the same set, vowel-
or consonant-exclusive features can be avoided,
since the two sets can share features and still find a
way to be distinct from another (the ‘Every Vowel,
Back consonant’ feature and the ‘All vowels, mid
consonant’ feature together include all the vowels
but no consonants).

We also have interesting results from a computer
science perspective, as we are clearly seeing super-
position within the features (Elhage et al., 2022).
Almost every feature exhibits a mixture of more
than one uncorrelated characteristics: the sonority-

hierarchy-adjacent features from earlier prove this
(no phoneme will be both a vowel and a fricative,
for instance), but we can also note that there are
many features that just specify some vowels united
by a place of articulation, and some consonants
united by a place of articulation e.g. ‘Front vow-
els, Non-mid consonants, liquids’, or ‘Back vow-
els, non-front consonants’. Since there is no over-
lap between these, we can argue that they repre-
sent distinct directions in feature space that are be-
ing superimposed onto one another, exactly what
we would expect in neural network superposition.
The sparsity constraint also greatly affects the re-
sults: Fig 5 and Fig 4 in the appendix show the
effects that changing the sparsity parameter α has
on the feature activation space, showing that in-
creasing α gives us clearer-cut but less expressive
(almost useless) features and decreasing it gives
us less-interpretable but more expressive (and thus
less sparse) features, as expected.

In conclusion, we have used a sparse
autoencoder-based approach to leverage historical
sound shift data and derive a new, computationally-
and historically-informed set of distinctive features
to use in phonology. These features show that
some common contrasts in phonology are backed
up by historical data – vowels vs. consonants,
the sonority hierarchy, the distinction between
places and modes of articulation – but others, such
as many vowel- or consonant-specific location
features, some finegrained manner features like
trills and taps (which all pattern together with
liquids at large anyway), and all the laryngeal
features (including [+voice]) are not, and are
mostly artifacts of feature sets useful for specific
languages. However, this universality of our fea-
ture set is also its downfall: ‘it is a jack of all trades
and master of none’, meaning that it has sacrificed
language-specific abilities (like the distinction
between /t/ and /d/ in modern speech) for the
ability to capture higher-level, more abstract shifts
in sounds, rendering it a more efficient coding
space-wise (15 features instead of 28) and one that
more effectively captures how humans perceive
sounds, but also rendering it very inefficient from
a phonological standpoint, as it cannot capture
common modern natural classes.

Further work may try to achieve this last desider-
atum by biasing the training data towards modern
languages instead of considering every language,
by somehow setting a minimum number of features
that each phoneme must abide by to avoid settings
like /k/’s, or by incorporating the difficulty of re-
producing common sound shifts into the loss func-
tion to emphasize the usability of the feature set.



Appendix
Full Set of Phonemes
The full set of phonemes used is as follows:

Vowels: ’u’,’a’,’i’,"e","o","E",’O’,"@","I","U","A","æ","W","y"

Plosives: "q",’k’,"g",’p’,"b","t","d","ú","c",’P’

Nasals: ’m’,"n",’n’,"ñ","ï"

Fricatives: "B","F","ð","X","f","v","s","z",’Z’,’S’,"x",’G’

Liquids: "K","r","R","ó","í","l"

Other: ’j’,’w’,"h" (/h/ is a non-consonantal con-
sonant; /j/ and /w/ are what is known as a ‘glide’,
sounds that have more than one place of articula-
tion)

Non-Sparse and Over-Sparse Results

Figure 4: Autoencoder results with α = 0.002
(‘Oversparse’, panels same as Figure 3)

Doubling α to 0.002 leads to clearly unusable
features: notice that Features 1 and 7 are active for
all phonemes, and there are very strange patterns in
the others, such as feature one being on for half the
vowels, off for the other half, and the on on for the
liquids, or /ð/ just being composed of features 10
and 12.

Setting α = 0 makes the feature activations a lot
less sparse even just by inspection, and reinforces
a lot of the similarity between similar phonemes:
vowels now have a cluster of features that seem to

Figure 5: Autoencoder results with α = 0 (‘Under-
sparse’, panels same as Figure 3)

be mostly concentrated around them, not just a sin-
gle one, and most plosives seem to pattern together.
However, the lack of sparsity invites a lot of noise:
the vowel-dominated features are also present in a
lot of the consonants, and there is no single, clean
feature in which all the vowels are present, which
is a huge loss for interpretability.

These results are likely due to the fact that there
are 215 = 32768 possible combinations of features
and only 50 phonemes, so this is a very overde-
termined space, and without the right amount of
sparsity we either underconstrain it, leading to sit-
uations like α = 0, or we overconstrain it and
we obtain the oversparse α = 0.002 graph, even
if both can obtain perfect reconstruction accu-
racy since they can essentially one-hot encode
phonemes given the huge feature space.

In light of these two results, it thus makes sense
to go somewhere in the middle, around α = 0.001,
where the sparsity seems to be about right and leads
to more meaningful features.

Data Availability
All the code, data, and models
for this project can be found at
https://github.com/vpepe/Neuro-240-Project. I
wrote all of the code myself using PyTorch.

https://github.com/vpepe/Neuro-240-Project
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