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Abstract

As large language models (LLMs) become
increasingly important to real-world applica-
tions, the need for effective machine unlearn-
ing—selectively removing previously learned
information—continues to grow. While recent
research introduces benchmarks and methods
for unlearning, current evaluations often rely
on ad-hoc constructions that lack clear defini-
tions of the retained and forgotten sets. Without
a principled benchmark design, it is challeng-
ing to derive actionable insights for practical
deployments. In this work, we propose a new
evaluation framework that emphasizes two key
aspects of unlearning benchmarks: (1) the form
of the forget set, and (2) the degree of entan-
glement between the forget set and the re-
tain set. We show that by varying the format
of the forgetting target (from raw text to com-
pressed summaries and triplets) and systemat-
ically controlling the overlap in content and
entities, we can improve the unlearning perfor-
mance and more accurately assess unlearning
methods. Through experiments on real-world
data, our analysis reveals that the forget-set
formats and entanglement levels significantly
influence both unlearning effectiveness and util-
ity preservation. These findings offer practical
guidance for building robust unlearning bench-
marks and highlight important directions for
future research.

1 Introduction

Large language models (LLMs) trained on massive,
uncurated web-scale data inevitably absorb content
that may be harmful, private, or otherwise undesir-
able. As these models find their way into a broad
range of applications, the ability to remove specific
knowledge—known as machine unlearning—has
emerged as a critical requirement to ensure safe
deployment and legal compliance. Unlike fully
retraining a model, which is computationally pro-
hibitive, unlearning aims to selectively eliminate
targeted information from an already-trained model

Figure 1: Spectrum of retain and forget set

without substantially degrading its general capabil-
ities (Eldan and Russinovich, 2023; Li et al., 2024;
Maini et al., 2024; Shi et al., 2024).

Achieving effective unlearning demands a rig-
orous definition of what should be forgotten and
what should be retained. Existing benchmarks com-
monly lack a principled formulation of the Forget
Set (the data or knowledge to be removed) and the
Retain Set (the data or capabilities to be preserved).
For instance, TOFU (Maini et al., 2024) and
WMDP (Li et al., 2024) evaluate knowledge-level
unlearning by removing question-answer pairs tied
to specific synthetic authors/domains while retain-
ing distinct synthetic authors and unrelated do-
mains as the reference for retain knowledge. In
contrast, MUSE (Shi et al., 2024) attempts to re-
move entire corpora (e.g. Harry Potter text or BBC
News articles) while retaining related but distinct
textual sources (e.g. Harry Potter wikis or a differ-
ent subset of BBC News), and the degree to which
the retain and forget data overlap is left implicit,
hindering a direct assessment of entanglement be-
tween the two sets.

These ad-hoc approaches make it difficult to
draw consistent, actionable insights about unlearn-
ing techniques. Thus, we argue that a well-defined
unlearning benchmark should consider two critical
factors:

1) Form of the Forget Set: Most approaches
directly use a subset of the raw training text as their
forget set. However, raw text can contain redun-



dant information, leading to scalability issues and
collateral utility loss (Shi et al., 2024; Wang et al.,
2024). Moreover, the forget set might target dif-
ferent levels of unlearning, from exact verbatim
memorization to higher-level conceptual or factual
knowledge. Evaluating performance across multi-
ple text forms (e.g., raw text, compressed prompts,
and structured triplets) would, therefore, provide a
more nuanced understanding of how unlearning in-
teracts with the granularity of the targeted content.
As illustrated in Figure 1, we transform the forget
set from full-text passages into progressively more
abstracted or structured forms, offering a controlled
way to measure how format affects the stability and
forgetting quality of the unlearning performed.

2) Entanglement Between Forget Set and Re-
tain Set: In practical scenarios, it is rare that the
content to be forgotten is wholly disjoint from the
content that must be retained: a wider range of
degrees of overlap being more likely instead. For
example, in MUSE’s formulation of the problem,
while one might aim to forget specific details from
a book (e.g. Harry Potter), the model should still
retain related factual knowledge (e.g summary in-
formation from Harry Potter wikis). As demon-
strated in Figure 1, we define three different en-
tanglement levels: ‘no overlap’ (e.g. WMDP with
world knowledge as retain set), ‘slight/low overlap’
(e.g. TOFU uses other irrelevant synthetic authors
as the retain set), and ‘high overlap’ (e.g. MUSE).
Greater entanglement complicates unlearning, as
removing information from the forgotten set may
inadvertently degrade related capabilities embed-
ded in the retained set. By quantifying the degree
of overlap and evaluating how unlearning methods
scale from low- to high-entanglement settings, we
can explicitly characterize the trade-offs between
forgetting quality and collateral damage in retained
capabilities.

These two factors—variation in the format of
the forget set and controlling the entanglement be-
tween the forget and retain sets—allow for a more
principled evaluation of unlearning algorithms. In
this work, we apply these principles to reconfig-
ure the MUSE benchmark and construct a set of
controlled experiments, systematically varying the
forget set format and the level of overlap between
the forget and retain sets. Through these exper-
iments, we find that existing unlearning datasets
and evaluations may not be as uniformly good as
previously assumed. Instead, their performance is

highly sensitive to both the structure of the forgot-
ten content and the degree of its entanglement with
what is retained.

The contribution of this work is threefold:

• We propose a refined forget/retain set design
that explicitly considers the form of the for-
get set and quantifies entanglement between
forget and retain sets.

• We demonstrate how varying these factors
yields deeper insights into the trade-offs and
limitations of current unlearning methods.

• We reconfigure the MUSE benchmark, a
benchmark with real-world corpora, to val-
idate our approach, guiding the community
toward more transparent, robust, and context-
sensitive unlearning evaluations.

2 Related works

2.1 LLM unlearning

A range of methods have emerged to perform LLM
unlearning. Input-based interventions include in-
context prompting and guardrails, where models
receive explicit negative examples or instructions
not to produce certain content (Thaker et al., 2024;
Pawelczyk et al., 2023). Model-based adjustments
typically involve fine-tuning or preference opti-
mization. Naive approaches use gradient ascent
on the forget set (Maini et al., 2024), whereas
more sophisticated methods incorporate curated
"good forgetting" data (Eldan and Russinovich,
2023; Maini et al., 2024) or leverage preference
optimization to minimize the likelihood of gener-
ating forget set information (Zhang et al., 2024;
Łucki et al., 2024). Other techniques involve con-
tent detection with further embedding corruption or
LoRA-based parameter updates (Gao et al., 2024;
Liu et al., 2024a), and vector steering (Li et al.,
2024; Zou et al., 2024; Arditi et al., 2024; Hong
et al., 2024) which identifies and manipulates la-
tent directions associated with the content to be
forgotten.

2.2 Evaluation benchmarks

Recent benchmarks attempt to evaluate these meth-
ods, but each comes with drawbacks. MUSE (Shi
et al., 2024), for instance, selects the text of Harry
Potter or BBC News as the forget set (depending
on the condition) and Harry Potter wiki or related
news articles as the retain set, assessing factors



like verbatim and knowledge memorization, pri-
vacy leakage, and utility preservation. However,
the degree of overlap or entanglement between the
respective retain and forget sets is not explicitly
quantified. Similarly, TOFU (Maini et al., 2024)
and WMDP (Li et al., 2024) define forget and re-
tain sets but rely on very different sets of authors
or domains, offering limited insight into how sub-
tle differences in overlap and data format affect
performance.

Our work provides a rigorous framework for
evaluating LLM unlearning that accounts for vary-
ing data formatting and degrees of forget-retain
entanglement. Compared to previous works, this
framework offers clearer guidance for both re-
searchers and practitioners in developing and se-
lecting appropriate unlearning strategies for diverse
real-world scenarios.

3 Constructing Controllable Unlearning
Datasets

3.1 Problem Formulation
We consider an LLM parameterized by θ, trained
on a dataset D. We identify two disjoint sub-
sets: a Forget Set DF ⊂ D, containing the data
or knowledge to be removed, and a Retain Set
DR = D \ DF , representing the content and ca-
pabilities that should be preserved. The goal of
unlearning is to update the model parameters from
θ to θ∗ such that the influence of DF is eliminated
or minimized without substantially degrading per-
formance on tasks associated with DR. In addition,
since conditioning directly on D\DF is intractable
due to the large size of such datasets, in practice
DR is always formed by some text that is close and
relevant to the forget set (Shi et al., 2024; Maini
et al., 2024) or general world knowledge (Li et al.,
2024).

Formally, unlearning can be formed as a reg-
ularized optimization problem that balances for-
getting and retaining. Specifically, it consist two
losses: a forget loss ℓf (y | x; θ) evaluated on
(x, y) ∈ DF , and a retain loss ℓr(y | x; θ) eval-
uated on (x, y) ∈ DR. The objective is:

min
θ

E(x,y)∈DF
[ℓf (y | x; θ)]

+ λE(x,y)∈DR
[ℓr(y | x; θ)] (1)

where λ ≥ 0 is a regularization parameter that
controls the trade-off between successful forgetting
and preserving retained knowledge.

3.2 Controlling the Forget Set Format
Most existing benchmarks apply unlearning meth-
ods directly to the raw text in DF , implicitly as-
suming that the format of the forget set does not
significantly affect unlearning outcomes. However,
raw text without careful curation often contains re-
dundant information, or information the user may
want to retain. For instance, if some text in the
raw forgetting corpora contains phrases regarding
general world knowledge like “The capital city of
France is Paris,” we likely do not want this to be
forgotten. This highlights the challenges in remov-
ing target knowledge without inadvertently harm-
ing the model’s general utility, which potentially
makes the current unlearning method hard to scale
(Shi et al., 2024; Lynch et al., 2024). This leads us
to ask: Is raw text the only or best data format for
unlearning?

To explore this question, we propose evaluat-
ing unlearning performance under three different
formats of DF :

1. Raw Text: Use the original textual data with-
out modification. While this setting is the
most natural and direct, it may interleave tar-
get knowledge with irrelevant content, com-
plicating selective forgetting.

2. Compressed Text: Apply an perplexity
driven compression algorithm (Li et al., 2023)
to remove redundant or non-essential informa-
tion. This yields a more concise version of the
forgetting set, potentially making the unlearn-
ing process more tractable and scalable.

3. Knowledge Triplet: We convert the targeted
content into structured (entity, relation, entity)
triplets using LLM. This compact represen-
tation highlights core facts and reduces the
complexity of what must be forgotten. By dis-
tilling the content into a conceptual form, we
minimize the redundancy of raw text.

By comparing unlearning performance across
these three formats, we can assess how forget set
formation choices impact the ease, fidelity, and
collateral effects of forgetting.

3.3 Controlling Entanglement Between Forget
and Retain Sets

In practical scenarios, the data to be forgotten is
rarely isolated from what must be preserved. In-
stead, there may be substantial overlap—or entan-
glement—in entities, facts, and styles between DF



and DR (Gao et al., 2024; Liu et al., 2024b). High
entanglement complicates unlearning, as removing
knowledge from DF risks disrupting the utility of
DR.

To quantify entanglement, we again utilize struc-
tured triplets. Specifically, we extract triplets from
both DF and DR and measure the proportion of
entities in a retain triplet that also appear in a for-
get triplet. Averaging this coverage across text
chunks yields an entanglement score that we use
to categorize data into low-entanglement and high-
entanglement subsets.

To more directly evaluate the collateral damage
caused by entanglement, we transform these sub-
sets of DR into QA tasks. An LLM is used to
generate QA pairs involving knowledge related to
the retained data. By evaluating the model after un-
learning on both low- and high-entanglement QA
tasks, we can measure how strongly entanglement
influences utility preservation. Additionally, incor-
porating independent QA sets (e.g., general world
facts from TOFU (Maini et al., 2024)) offers an un-
derstanding of the collateral damage of unlearning
over no overlap general knowledge tasks.

4 Integration with Real World Data

To illustrate our approach, we apply these construc-
tion principles to a real-world benchmark. We fo-
cus on reconfiguring the MUSE benchmark (Shi
et al., 2024), which originally involves forgetting
certain raw corpora (e.g. Harry Potter text or BBC
News articles) while attempting to preserve related
but distinct corpora (e.g. Harry Potter wikis, al-
ternative BBC News subsets from the same time
range).

4.1 Reconfiguring MUSE

We apply the methodology outlined in Section 3
to construct forget/retain data for MUSE: 1) Re-
construct the Forget Set: Applying the raw, com-
pressed, and triplet-based transformations to the
MUSE forget set data. In particular, we apply the
Selective-Context (Li et al., 2023) pruning method
to compress the irrelevant and redundant infor-
mation from the original MUSE forget set, and
we obtain roughly 75% data from this approach.
Then, we leverage Llama-3-405b to extract the
triplets(Touvron et al., 2023). 2) Quantifying En-
tanglement: We extract triplets from the retain
set and measure their entity coverage against those
from the forget set, as described in Section 3. Based

on these metrics, we partition the retained data into
low- and high-entanglement subsets. 3) Evaluat-
ing Collateral Damage: To assess how entangle-
ment influences utility preservation, we generate
QA pairs from both low- and high-entanglement
subsets. We also incorporate a separate set of
“world facts” QA (from TOFU (Maini et al., 2024))
that is unrelated to either DF or DR. This external
QA benchmark serves as the ‘no overlap’ entangle-
ment level in our spectrum (Fig. 1).

4.2 Experimental Setup and Metrics

Unlearning Methods: For the forgetting loss from
Equation 1, we consider three representative un-
learning approaches: Gradient Ascent (GA):(Shi
et al., 2024) Directly apply gradient ascent over
the cross-entropy loss over the forget data. Nega-
tive preference optimization (NPO): Zhang et al.
Treat the forget data as negative preference data
using a DPO-like objective. SimNPO: Fan et al.
proposes using SimPO (Meng et al., 2024), a pref-
erence optimization technique, to perform unlearn-
ing. This recently released method has demon-
strated state-of-the-art performance in preference
optimization-based unlearning.

Retaining Capabilities: For the retain loss, fol-
lowing the MUSE and TOFU frameworks (Maini
et al., 2024; Shi et al., 2024), we employ a KL-
divergence regularization on the retain set distri-
butions. This aligns the unlearned model’s output
distribution with a target model on DR, thereby
mitigating collateral damage.

Evaluation Metrics: We adopt three of the orig-
inal metrics of MUSE. In particular, we mainly
measure the verbatim memorization over the forget
set and knowledge memorization over both retain
set and forget set. In particular, we measure the
verbatim memorization by measuring the ROUGE-
L F1 score between the raw forget prompt and the
completion of the model given in the first half of
the prompt, and knowledge memorization by mea-
suring a QA form of knowledge, measuring the
ROUGE scores for all question-answer pairs. For
the forget quality measurement, we measure the
verbatim memorization and knowledge memoriza-
tion. For the retain preservation measurement, we
measure the high entanglement retain knowledge
memorization, low entanglement retain knowledge
memorization and world knowledge memorization.

Training Details We use the MUSE-provided
model checkpoints for both the Harry Potter Books



Table 1: Comparison of Forget & Retain Performance under Different Forget Formats and Retain Subsets. We
report the relative performance change between the target model to be unlearned and the resulting unlearned model,
computed as Schange =

Starget−Sunlearned

Starget
× 100. A higher performance change indicates better Forget Quality, while a

smaller change indicates better Retain Preservation. For each (Forget, Retain) combination, we bold the highest
Forget Quality change and lowest Retain Preservation change across algorithms. Cells highlighted in blue represent
the best-performing method for a particular unlearning algorithm.

Forget Retain GA NPO SIMNPO

Forget ↑ Retain ↓ Forget ↑ Retain ↓ Forget ↑ Retain ↓

NEWS

Raw
low 50.40 34.05 52.57 34.60 52.74 33.95
high 55.94 45.16 55.36 45.93 55.15 44.83
original 47.90 24.86 46.64 25.35 46.45 25.44

Pruned
low 48.00 28.36 47.81 28.74 46.09 29.10
high 57.66 35.65 59.18 35.23 59.58 34.60
original 48.19 28.86 46.68 29.71 46.28 28.24

Triplets
low 42.38 25.22 42.60 25.09 43.17 25.18
high 39.18 21.16 42.18 20.63 37.18 21.63
original 43.55 16.46 43.51 16.65 43.95 15.25

BOOKS

Raw
low 82.32 53.05 83.98 50.87 78.75 40.25
high 82.24 50.78 80.84 54.98 80.44 52.19
original 82.81 53.90 81.84 53.02 81.72 51.33

Pruned
low 79.41 43.72 78.30 48.12 81.00 47.66
high 78.76 48.67 76.87 43.85 76.33 49.46
original 76.07 34.15 76.26 39.74 77.55 38.12

Triplets
low 23.82 13.42 24.14 14.01 21.74 13.22
high 32.63 17.45 31.21 18.12 30.92 17.09
original 55.01 18.61 55.34 20.45 56.17 19.53

and BBC News. For BBC News, we run unlearning
for 5 epochs using a learning rate of 2e− 5 and a
batch size of 4. For Harry Potter books, we train
for 2 epochs with the same learning rate and batch
size. Since the triplet form contains much fewer
tokens compared with raw and compressed data,
we double the running epochs for the triplet form.
For all the unlearning methods, we set the retain
regularizer λ = 1.

4.3 BBC News
We begin by examining the reconstruct BBC News
scenario, where the forget set is drawn from BBC
news articles and the retain set comprises BBC
news articles from another subset with the same
time range. Table 1 and Figure 2 summarize our
key findings.

Format and Performance Trade-offs. As
shown in Table 1, using a compressed (pruned)
prompt for the forget set consistently yields the
highest forgetting quality across algorithms, while

the triplet format provides notably stronger retain
preservation. These results suggest that raw text,
while intuitive, may not be the optimal format for
achieving a balanced unlearning outcome. By com-
pressing the forget set, the model focuses on essen-
tial content to forget, and by further abstracting it
into triplets, we can minimize collateral damage on
the retained capabilities.

Influence of Entanglement. The results also
highlight the crucial role of entanglement. Com-
pressed prompts combined with high-entanglement
retain sets offer a Pareto improvement compared
to raw forget sets with original retain sets, demon-
strating that controlling both format and overlap
can yield more favorable trade-offs.

Interestingly, Figure 2 reveals that, while low
and high-entanglement QA subsets perform simi-
larly in the target model, once unlearning methods
are introduced low-entanglement subsets experi-
ence greater performance degradation.

In addition, a notable observation from Figure 2



Figure 2: Performance comparison of unlearning algo-
rithms applied to the BBC News dataset, assessed across
combinations of forget and retain strategies. We report
five evaluation metrics: two Forget Quality metrics —
Verbatim-level Forgetting (Forget) and Knowledge-level
Forgetting (Forget)—and three Retain Preservation met-
rics— Low Entanglement Preservation (Retain), High
Entanglement Preservation (Retain), and World Fact
Preservation (Retain). The evaluation also includes the
performance of the original (‘target’) model. For all
metrics, higher scores indicate better performance. Top:
Gradient Ascent. Middle: NPO. Bottom: SimNPO.

is that in certain scenarios, knowledge of general
world facts actually improves after unlearning.

Entanglement and Retain QA Conditioning.
When conditioning on low-entanglement data, the
high-entanglement retain QA often outperforms the
performance measured under high-entanglement
conditions, except in the triplet scenario.

4.4 Harry Potter Books

We next turn to the Harry Potter books scenario,
as illustrated in Table 1 and Figure 3. In contrast
to BBC News, raw text in the Harry Potter ex-
periments achieves the best forgetting quality, and

Figure 3: Performance comparison of unlearning al-
gorithms applied to the Harry Potter Books dataset,
assessed across combinations of forget and retain strate-
gies. Top: Gradient Ascent. Middle: NPO. Bottom:
SimNPO.

triplet format still provides superior utility preser-
vation.

Struggles with Triplets for Forgetting. Unlike
the News setting, triplets here struggle to reach
high forgetting quality. The model appears to have
strongly memorized the training data (≈ 100% of
Verbatim memorization), so we hypothesize that
removing knowledge from heavily memorized text
is more direct when using raw text: compressing or
abstracting it into triplets reduces redundancy but
may inadvertently remove critical cues the model
relies on to identify which content to forget.

Significant Utility Trade-Offs. Unlearning in
the Harry Potter domain leads to substantial perfor-
mance degradation across all retain sets. Raw text
forgetting, in particular, incurs more than a 50%
change in Retain Preservation. The compressed for-
mat achieves the most balanced outcome, suggest-
ing that the optimal strategy in highly entangled



and memorized domains may involve moderate
compression rather than full abstraction or the use
of raw text.

Conditioning Effects on Retained Utility. In-
terestingly, Figure 3 shows that conditioning on
different retain subsets or entanglement levels do
not drastically alter final utility outcomes. This
stability contrasts with the BBC News scenario,
which leaves room for exploration in the future.

4.5 Discussion and Insights

No Free Lunch. Our results confirm a “no free
lunch” scenario in LLM unlearning. Every com-
bination of forget format and entanglement level
entails trade-offs. High-quality forgetting often
comes at the expense of retain preservation, and
vice versa. The extent of this trade-off depends on
the chosen data format and the level of the entan-
glement.

Algorithmic Comparisons. Although SimNPO
tends to produce the best overall results, the gains
are not always substantial over naive methods like
gradient ascent. This observation supports our ear-
lier conclusion that the careful design of forget sets
and retain sets, as well as controlling entanglement,
can be as critical as (if not more important than)
the choice of the unlearning algorithm.

Format Matters. Raw text is not always the ideal
choice. In the BBC News scenario, compressed
forget sets may improve forgetting quality, while
triplets excel at minimizing collateral damage. In
the Harry Potter scenario, triplets also yield bet-
ter utility preservation, even if raw text remains
superior at forget quality. Adjusting the forget set
format thus emerges as an effective tool for navi-
gating the forget-utility trade-off.

Entanglement-Dependent Collateral Damage.
While we have taken initial steps to measure collat-
eral damage through QA performance on subsets
of varying entanglement, further investigation is
needed. The relationships uncovered here—such
as unexpected improvements in unrelated world
knowledge or stable performance under certain con-
ditions, hint at a rich set of dynamics. Future work
should explore more granular measures of entangle-
ment and examine how fine-grained manipulations
of both forget and retain sets affect the quality of
unlearning.

5 Conclusion

In this work, we have introduced a principled
framework for constructing and evaluating unlearn-
ing benchmarks that systematically vary the for-
mat of the forget set and the level of entangle-
ment between the forget set and the retain set. By
experimenting with raw, compressed, and triplet-
based forget formats, as well as low- and high-
entanglement retain subsets, we revealed critical
insights into the trade-offs between forgetting ef-
fectiveness and retain preservation. Our findings
demonstrate that simply applying unlearning meth-
ods to raw textual data may not yield optimal out-
comes and that transforming the forget set into com-
pressed or triplet-based representations can better
isolate target knowledge and minimize collateral
damage. Furthermore, we show that the entangle-
ment between the forget and retain sets affects the
final collateral damage of unlearning, underscor-
ing the need for benchmarks that reflect real-world
challenges.

6 Impact Statement

The methodology and findings presented in this
work have the potential to significantly shape the
future of machine unlearning research and deploy-
ment. By providing a clear framework that high-
lights how the format of the forget set and the de-
gree of entanglement with retained content affect
unlearning performance, our work encourages the
community to move beyond simplistic benchmarks
and consider the underlying data structure and com-
plexity. This shift in perspective can help practition-
ers develop more targeted, efficient, and scalable
unlearning strategies that balance strict compliance
with regulatory or ethical mandates against the need
to preserve valuable model capabilities.
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