
AdaSPEED: Adaptive Self-Speculative Early-Exit
Decoding

Alice Liu
Harvard University

Cambridge, MA
aliceliu@c∗

Valerio Pepe
Harvard University

Cambridge, MA
valeriopepe@c∗

Julia Shephard
Harvard University

Cambridge, MA
jshephard@c∗

Gabriel Wu
Harvard University

Cambridge, MA
gabrielwu@c∗

Abstract—We propose Adaptive Self-Speculative Early-Exit De-
coding (AdaSPEED), a method for speeding up transformer
inference. Previous work on speculative decoding has shown
that inference speeds can be increased by generating D > 1
tokens at a time with a subset of model layers, where D is
chosen to be constant (‘Constant-D’, [2]) or adaptively chosen to
stop at the first token with decoding probability less than some
threshold γ (‘Draft & Verify’, [3]). In this work, we propose
two improvements to this method: generating tokens based on
the product of either (1) the token probabilities or (2) a linear
probe’s prediction of the token acceptance probabilities, and
continuing until this product falls below γ. We test our methods
on LayerSkip [1] and find that they speed up text generation by
17% with greedy decoding, and 38% with top-p decoding.

Index Terms—Large Language Models, Speculative Decoding

I. INTRODUCTION

A. Motivation

The success of transformer-based large language models has
made them promising candidates for applications in latency-
sensitive settings. However, transformer inference can be slow,
as tokens must be decoded serially, and models are large. In
standard transformer inference, decoding k tokens requires k
consecutive runs of the full model, meaning a forward pass
takes a significant amount of time.

Speculative and self-speculative decoding schemes tackle
the problem of slow inference by ensuring that almost all
serial generation is done by models smaller than the full
model. Speculative decoding uses a small model to serially
generate sequences of tokens, then verifies these sequences
using the larger model. Although it speeds up inference, this
technique has the drawback of requiring two models. Self-
speculative decoding, in contrast, generates draft sequences of
tokens using either a prefix or subset of the larger model’s
layers and verifies with the full model, requiring only one.

Two methods to speed up self-speculative decoding have
been developed in the past year. LayerSkip, a variant of the
LLaMa architecture that is trained for early-exiting of tokens,
performs self-speculative decoding by generating D > 1
tokens and having them early-exit at a fixed layer E [1].
Draft & Verify identifies an optimal subset of early layers to
generate draft token sequences [3]. In contrast to LayerSkip,
Draft & Verify generates tokens using these layers until its

* Equal contribution. @c = @college.harvard.edu.

Fig. 1. The self-speculative decoding techniques used in this paper:
AdaSPEED outperforms previous techniques in both decoding settings. The
multipliers correspond to the average speedup across the 1B and 7B models.

predicted probability that the next token it has generated will
be accepted by the larger model falls below a certain threshold,
γ. In both methods, the generated tokens of sequences are
checked against the full model in parallel.

B. Our Work

While LayerSkip and Draft & Verify both provide sub-
stantial speedups over baseline autoregression, each has room
for improvement. By always generating a constant number
of tokens, LayerSkip preemptively cuts off long sequences
of tokens that will likely be accepted by the larger model
and wastes time extending short sequences of tokens that
will likely not. Draft & Verify, on the other hand, cuts
off token sequences solely on the basis of the next token’s
acceptance probability, rather than any measure of whether
the full sequence will be accepted.

In this paper, we propose and implement two methods
to speed up LayerSkip and self-speculative decoding more
broadly. First, we implement a modification to the Draft &
Verify acceptance schema. Instead of using the probability that
the marginal token will be accepted, we generate tokens until
the product that all token probabilities are accepted falls below
a certain threshold γ. This approach, our “secret weapon,”
exploits the idea that we want to cut off our sequence once
the model has likely made a mistake, even if each token
individually has a high probability of acceptance, and the
probability the model has made a mistake rises with each
generation. Second, rather than using the probability of token
acceptance as given by the model, we train a linear probe to
predict whether a token generated by the model’s early layers
will be accepted by the full model.



We implement both of these methods on LayerSkip. We find
that our approach, which we term “AdaSPEED”, outperforms
both standard LayerSkip and adaptive LayerSkip with Draft
& Verify-inspired acceptance methods. We also find that
adding the linear probe speeds up our model relative to other
LayerSkip variants further when we use top-p decoding. Our
findings suggest that in self-speculative decoding, the joint
probability of sequence acceptance may be more informative
than the marginal probability. They also suggest that even
probes trained on a small amount of data can provide a
better proxy for token acceptance probability as it pertains to
performance than using model logits. Our main contributions
are additions to the theory underlying optimal token exiting
as well as empirical results demonstrating a speedup induced
by our method.

C. Self-Speculative Decoding

Let V be a transformer model with L layers, and let
x1, . . . , xt be input tokens to the model. Self-speculative de-
coding is implemented in LayerSkip as follows. At each layer
ℓ, an LM head is fitted in order to output p(xt+1|ℓ, x1, . . . , xt),
the probability distribution placed on possible tokens given
that the algorithm early-exits at layer ℓ. p(xt+1|L, x1, . . . , xt)
represents the logits of the full model. In the constant-D
algorithm, D consecutive tokens are generated by assigning
xj+1 ← argmax p(x|ℓ, x1, . . . , xj). We describe the algo-
rithm for Draft & Verify-inspired LayerSkip in Algorithm 1.
This approach generates tokens until the predicted probability
of the last token falls below an adaptive threshold γ. 1

Algorithm 1 Draft & Verify - Greedy Decoding
1: Initialize i ← 0; layer ℓ for early exiting; model V; max

tokens T to generate
2: while i < T do
3: for j ← i, . . . , T do
4: xj+1 ← argmax p(x|ℓ, x1, . . . , xj)
5: if p(xj+1|ℓ, x1, . . . , xj) < γ then
6: Break
7: for i← i, . . . , j do
8: if xi+1 ̸= argmax p(x|L, x1, . . . , xi) then
9: xi+1 ← argmax p(x|L, x1, . . . , xi)

10: Break
11: i← i+ 1
12: return x1, . . . , xT

II. OUR APPROACH

A. Product of acceptance probabilities

While the Draft & Verify approach uses the marginal
probability, p(xj+1|ℓ, x1, . . . , xj), to decide whether to halt
the drafting process, we instead choose to move to the
verification stage when

∏j
k=i p(xk+1|ℓ, x1, . . . , xk) < γ. In

considering this approach, it is important to remember that

1The algorithm to adaptively change γ, taken from Draft & Verify [3] is
discussed in the Appendix.

in the verification step, tokens are verified until one of them
is rejected, at which point all subsequent tokens are rejected
as well. Draft & Verify exploits this fact – if one token is
likely to be rejected, subsequent tokens should not be added to
the sequence. Implicitly, however, Draft & Verify disregards
all previous tokens by choosing to move to the verification
stage based on the marginal probability of token acceptance.
By focusing instead on the joint probability – the product of
the probabilities of token acceptance thus far, we ensure that
we will stop drafting once it is likely that the draft sequence
contains a mistake. This approach is shown in Algorithm 2.

Algorithm 2 AdaSPEED with Greedy Decoding
1: Initialize i← 0; exit layer ℓ; model V; max tokens T
2: while i < T do
3: for j ← i, . . . , T do
4: xj+1 ← argmax p(x|ℓ, x1, . . . , xj)

5: if
∏j

k=i p(xk+1|ℓ, x1, . . . , xk) < γ then
6: Break
7: for i← i, . . . , j do
8: if xi+1 ̸= argmax p(x|L, x1, . . . , xi) then
9: xi+1 ← argmax p(x|L, x1, . . . , xi)

10: Break
11: i← i+ 1
12: return x1, . . . , xT

The motivation for using the product of probabilities instead
of the marginal probability becomes clear in the following
example: if the model is generating text in which the maximum
token probability at layer ℓ always happens to be greater
than γ, then the D&V algorithm will never break out of its
speculation loop. However, after generating dozens of tokens,
it is very likely that one of these tokens was a mistake.
Considering the product of probabilities circumvents this issue,
as the speculation loop is guaranteed to break eventually (as
long as the probabilities are bounded away from 1).

B. Linear probes

The standard Draft & Verify approach uses the probability
predicted by the intermediate layers as the metric of accep-
tance. However, confidence at an early layer may not be
an ideal proxy for the probability that the token is actually
accepted. To more realistically estimate this value, we train
a linear probe to predict the probability of a match between
outputs at intermediate layer ℓ and outputs at the final (ver-
ification) layer L. The probe is a one-layer neural network
that uses binary classification loss. With a batch size of N,
for n = 1, . . . , N, let xn be the speculative token predicted at
layer ℓ and let yn the generated token at the final layer L, both
at token position n. Let hn ∈ Rd be the hidden state at layer
n. Then our loss function for the linear probe (represented by
a direction v ∈ Rd and bias b ∈ R) is

Lprobe =
1

N

N∑
n=1

(
− log

{
σ(v · hn + b) yn = xn

1− σ(v · hn + b) yn ̸= xn

)
.



TABLE I
CNN DAILY MAIL SUMMARIZATION RESULTS

Methods Greedy decoding (1B) Top-p decoding (1B) Greedy decoding (7B) Top-p decoding (7B)
LayerSkip 68tps (1.00x) 43tps (1.00x) 34tps (1.00x) 29tps (1.00x)

Draft & Verify 75tps (1.10x) 58tps (1.35x) 38tps (1.12x) 33tps (1.14x)

AdaSPEED (no probe) 79tps (1.16x) 61tps (1.42x) 40tps (1.18x) 35tps (1.21x)
AdaSPEED (probe) 75tps (1.10x) 65tps (1.51x) 38tps (1.12x) 36tps (1.24x)

In the experiments that follow, we train linear probes that
are specific to each model and exit layer.

III. IMPLEMENTATION

We implement our algorithm using Meta’s LayerSkip li-
brary, using Meta’s LayerSkip-Llama models with 1 bil-
lion and 7 billion parameters. We test our method on
the CNN/Daily Mail Summarization dataset, which contains
slightly over 300,000 articles and their summaries from both
CNN and the Daily Mail. We select this dataset because it is
used to test LayerSkip and heavily emphasized by their au-
thors, as well as being a popular summarization dataset. Since
self-speculative decoding requires that outputs are accepted
by the full transformer model, ensuring lossless generation,
we can measure the success of our model solely through
its tokens/sec. This is a standard metric in self-speculative
decoding research, used in both LayerSkip and Draft & Verify.

We train our probes for 500 batches of 4 CNN/DM sum-
marization tasks each, yielding classification accuracies of
∼ 0.75. Even with this accuracy (which does not improve
if trained for longer), AdaSPEED with probes outperforms
AdaSPEED without probes in terms of token acceptance rate,
meaning the model is picking up meaningful signal.

A. Results

Table I shows our results on the CNN/Daily Mail Sum-
marization dataset. Regardless of sampling methodology and
model size, AdaSPEED is faster than Draft & Verify. While
these results are consistent across model sizes, AdaSPEED
offers more of a speedup over baseline LayerSkip for the
1 billion parameter model. A potential explanation for this
is that in a smaller model, each layer holds proportionally
predictive power about the generated token, so the signal given
by the joint probability of an earlier layer is more meaningful
than it is in a bigger model. This suggests AdaSPEED could
be particularly valuable for deployment in scenarios where
smaller models are preferable.

Within each model, with greedy decoding our probe-less
approach generates more tokens/sec than when we deploy
AdaSPEED with the probes. In contrast, when we employ top-
p decoding, AdaSPEED with probes dominates AdaSPEED
without probes. One explanation for the relative dominance
of the probe method in top-p decoding is that probes trained
to require both the early exit and final layer to agree on the
top p tokens may have richer prediction signals than probes
trained to have layers agree on the argmaxed token. Top-p

probes will thus be more robust predictors of acceptance after
being trained than the probes we train for the greedy models.

In general, we observe that the optimal exit layer for
AdaSPEED when implemented without probes is lower than
the optimal exit layer for baseline LayerSkip, Draft & Verify,
and AdaSPEED with probes (Layer 4 vs. 6). We anticipate that
this may give AdaSPEED an edge in distributed computing.

IV. RELATED WORK

Speculative decoding was introduced by Leviathan et al.
as a technique to improve transformer inference speed [2],
proposing the use of a separate model as the speculator. El-
houshi et al. (LayerSkip) build off this work by demonstrating
that a single model can be trained such that a prefix of its
layers serves as a good speculator [1], with the benefit that
only the remaining L− ℓ model layers have to be run during
the verification step. However, they still focus on a decoding
algorithm in which the exit layer and number of speculated
tokens are constant.

Finally, Zhang et. al (Draft & Verify) propose an adaptive
speculative decoding algorithm in which tokens are specula-
tively generated until the marginal probability of the next token
to be decoded falls below γ [3], with an adaptive procedure
for tuning γ during generation.

V. CONCLUSION

AdaSPEED outperforms both LayerSkip and Draft &
Verify-implemented LayerSkip by exploiting the use of both
linear probes and the joint probability distribution of a full
token sequence being accepted. We anticipate that some in-
sights developed in self-speculative decoding might speed the
strategy up further. In particular, work to adaptively pick the
exit layer during token generation, rather than in advance,
might improve throughput. Further, while our product-based
approach appears to work well, more complex criteria for
leveraging the joint distribution and exiting the draft stage
might work even better, e.g. penalizing tokens with a low
acceptance probability earlier in the generation sequence.
Future work could also focus on better probe training methods,
or other types of sampling (e.g. top-k) and more datasets.

VI. GROUP CONTRIBUTION STATEMENT

All team members contributed to the development of the
method. GW, VP, and JS implemented the method and exper-
iments. VP conducted the hyperparameter sweep for the opti-
mal exit layer. JS, VP, and AL ran many of the experiments.
JS led the writing of the report.



REFERENCES

[1] Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer,
Bram Wasti, Liangzhen Lai, Anas Mahmoud, Bilge Acun, Saurabh
Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, and Carole-Jean Wu.
Layerskip: Enabling early exit inference and self-speculative decoding.
In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), page 12622–12642.
Association for Computational Linguistics, 2024.

[2] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from
transformers via speculative decoding, 2023.

[3] Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen,
and Sharad Mehrotra. Draft & verify: Lossless large language model
acceleration via self-speculative decoding, 2024.

VII. APPENDIX

A. Adaptive Acceptance Probability Threshhold

As in Draft & Verify, we use an acceptance probability γ,
which we update using the adaptive rule defined in [3]:

AR← β1AR+ (1− β1)ARe,

γ̃ =

{
γ + ϵ if AR ≤ α

γ − ϵ, otherwise

γ ← β2γ + (1− β2)γ̃.

We implement this in our Draft & Verify method, as well
as in AdaSPEED. Constant-D LayerSkip does not require
γ-updating by definition. Values of β1, β2, ϵ are taken from
Draft & Verify, which has them optimized. Conducting a
hyperparameter search, we choose to initialize γ = 0.8


